Student \#:
Name:
Write down answers in-between questions. Please answer using short sentences. The given spaces should be more than enough.

1. How many bytes are necessary to store a 1024×1024 color image with an alpha channel using 8

M: $6 \times n$ bits per channel? 4 channels i Red, Green, Blue, Alpha
2. What is a parametric form (or explicit equation) for the axis-aligned 2 D ellipse of which center is at \boldsymbol{p}, width and height are a, b ? (hint: use parameter $t \in[0,2 \pi)$. e.g., $\{f(t) \mid t \in[0,2 \pi)\}$)

$$
\left\{\left.\mathbb{P}+\left(\frac{a}{2} \cos t, \frac{b}{2} \sin t\right) \right\rvert\, t \in[0,2 \pi)\right\}
$$

25 . What is the implicit equation of the plane through 3 D points $(1,0,0),(0,1,0)$, and $(0,0,1)$? What is the parametric equation? What is the normal vector to this plane?
method $1:\{(x, y, z) \mid a x+b y+c z=1\}$
from 3 constraints a. $1+b \cdot 0+c \cdot 0=1$

$$
\begin{aligned}
& a \cdot 0+b \cdot 1+c \cdot 0=1 \\
& a \cdot 0+b \cdot 0+c \cdot 1=1 \\
& \rightarrow \quad a=b=c=1
\end{aligned}
$$

\therefore implicit equation $=\{(x, y, z) \mid x+y+z=1\}$
normal vector: $(1,1,1)$

where
4. Show by counterexample that is is not always true that for 3 D vectors a, b, and c , $\boldsymbol{a} \times(\boldsymbol{b} \times \boldsymbol{c})=(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}$.

8

$$
\begin{cases}\hat{y}_{b=c=(0,0,1)}^{z} & b \times c=(0,0,0) \\ f_{y}=(1,0,0) & \therefore a \times(b \times c)=(0,0,0) \\ & (a \times b) \times c=(-1,0,0)\end{cases}
$$

/ 0 5. What are the ray parameters of the intersection points between ray $(1,1,1)+t(-1,-1,-1)$ and the sphere centered at the origin with radius 1?

$$
\begin{aligned}
& \left|\frac{d}{p}+t \bar{d}\right|=1 \\
& \therefore(\bar{p}+t \bar{d}) \cdot(\bar{p}+t \bar{d})=1
\end{aligned}
$$

$$
\frac{\downarrow}{p} \quad \frac{\downarrow}{d}
$$

$$
\begin{aligned}
& 3 t^{2}-6 t+2=0 \\
& \therefore t=\frac{6 \pm \sqrt{6^{2}-4 \cdot 3 \cdot 2}}{6}=12 \\
& \therefore \\
& =\frac{3 \pm \sqrt{3}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& n=\left(n_{x}, n_{y}, n_{z}\right) \\
& n_{y}-n_{x}=0 \quad \therefore n=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\
& \begin{array}{l}
n_{z}-n_{x}=0 \\
n_{x}+n_{y}^{2}+n_{z}{ }^{2}=1 \quad \therefore \text { implicit equation }=\left\{v \left\lvert\,(v-(1,0,0)) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=0\right.\right\}
\end{array}
\end{aligned}
$$

6. (a) Write down the 4×4 3D matrix to move by $\left(x_{m}, y_{m}, z_{m}\right)$.

$$
\prod\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)=\left(\begin{array}{c}
x+x_{m} \\
y+y_{m} \\
z+z_{m}
\end{array}\right) \quad \therefore \mathbb{T}^{\prime}=\left(\begin{array}{cccc}
1 & 0 & 0 & x_{m} \\
0 & 1 & 0 & y_{m} \\
0 & 0 & 1 & z_{m} \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(: (b) Write down the 4×4 3D matrix to rotate by an angle θ about the y-axis.

$$
R\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
-1 & 0 & 1
\end{array}\right) \quad \therefore R=\left(\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\right.
$$

(c) Write down the 4×4 rotation matrix \mathcal{M} that maps the orthonormal $3 B$ vectors
 $\boldsymbol{u}=\left(x_{u}, y_{u}, z_{u}\right), \boldsymbol{v}=\left(x_{v}, y_{v}, z_{v}\right)$, and $\boldsymbol{w}=\left(x_{w}, y_{w}, z_{w}\right)$, to orthonormal 3D vectors
 $\boldsymbol{a}=\left(x_{a}, y_{a}, z_{a}\right), \boldsymbol{b}=\left(x_{b}, y_{b}, z_{b}\right)$, and $\boldsymbol{c}=\left(x_{c}, y_{c}, z_{c}\right)$, so $M \boldsymbol{u}=\boldsymbol{a}, M \boldsymbol{v}=\boldsymbol{b}$, and $M \boldsymbol{w}=\boldsymbol{c}$.

$$
\begin{aligned}
& \boldsymbol{a}=\left(x_{a}, y_{a}, z_{a}\right), \boldsymbol{b}=\left(x_{b}, y_{b}, z_{b}\right) \text {, and } c=\left(x_{c}, y_{c}, z_{c}\right), \text { so } M \boldsymbol{u}=\boldsymbol{a}, M \boldsymbol{v}=\boldsymbol{b} \text {, and } M w=c_{0} \\
& M\left(\begin{array}{cccc}
u^{\top} & v^{\top} & w^{\top} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
a^{\top} & b^{\top} & c^{\top} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), M=\left(\begin{array}{cccc}
x_{a} & x_{b} & x_{c} & 0 \\
y_{a} & y_{b} & y_{c} & 0 \\
z_{a} & z_{b} & z_{c} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{llll}
x_{u} & x_{v} & x_{w} & 0 \\
y_{u} & y_{v} & y_{w} & 0 \\
z_{u} & z_{v} & z_{w} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)-1
\end{aligned}
$$

(1) mirror about $y=x$
(2) mirror about $x=0$
(3) translate by $(1,1)$
8. Derive the incremental form of the midpoint line-drawing algorithm for $0<m \leq 1$.
(hint: modify the non-incremental form shown below.)
double $x=$ ceil($(x 0)$;
while ($x<=$ floor $(x 1)$)
\{
double $y=b+m^{*} x$; output(x, round (y));

$$
x=x+1.0 ;
$$

\}

9. Which of these share the same topology? Which share the same geometry?

(a)

(b)

(c)
(o, (b) : Same topology (a), (c) : Same geometry
10. Look at each of the following images rendered in a pipeline system. For each one, answer the following questions. Describe in words; you don't need to write down any equations. You can assume that the depth test is done automatically after the fragment stage. All three images were generated from the same triangular mesh using the Phong, flat, and gouraud shading techniques, respectively. Some attributes you might need include positions, normals, colors, texture coordinates, or scalar values. Write down all the assumptions that you had to make.

(a) Explain what per-vertex attributes need to be passed from the application to the vertex stage.

(b) Describe the computations that need to be done at the vertex stage.
(1)
(2)
(3)

shading
(3) 11
(c) Explain what attributes are interpolated by the rasterizer for the fragment stage.
(d) Describe the computations that need to be done at the fragment stage.
texture coordinates, somple textures, combine colors
11. Represent vector \boldsymbol{c} in terms of vector \boldsymbol{a} and \boldsymbol{b} using the dot product operator (\cdot) and the length operator (\mid |).

$$
|C|=a \cdot \frac{b}{|b|}
$$

C
 and the length operator $(|\mid)$. Vector $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are in the same plane, and \boldsymbol{d} is orthogonal to the other vectors.

$$
\begin{aligned}
& \bar{d}=\frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|} \\
& \bar{c}=\overline{\bar{d}} \times \frac{\bar{a}}{|\bar{a}|}=\left(\frac{\bar{a} \times \bar{b}}{|\bar{a} \times \bar{b}|}\right) \times \frac{\bar{a}}{|\bar{a}|}
\end{aligned}
$$

13. Derive the average storage requirement (bytes per vertex) of the indexed triangle set representation assuming that a vertex contains a position and a normal (4byte float variables) and that the number of triangles is twice the number of vertices on average.
36 wite Soittex buffer: $(3+3) \cdot 4$ bytes per vertex $+\quad=48$

14. Write‘down the array of vertex indices that represents the following triangle strip consisting of 5 triangles. What is the advantage of the triangle strip representation?

$$
(6,9,0,3,2,10,7)
$$

efficient memory usage, faster rendering
15. Write down the 3×4 projection matrix that maps a $3 d$ point (x, y, z) to ($\left.x^{\prime}, y^{\prime}\right)$?

Hint: similar triangles, homogeneous coordinates
projection plane
16. Briefly explain why the measured dynamic range of the same display can differ depending on

10 lighting conditions.

$$
R_{d}=\frac{I_{\max }+k}{I_{\sin }+k}
$$

viewing flare k : light reflected by the display depends on lighting
17. [Hidden surface removal] Briefly explain the main downside of the painter's algorithm, and then explain the alternative algorithm that is unanimously used in real-time applications such as games.
if there are cycles, there is no sort of the graph of occlusions.

Z-buffer keeps track of closest depth so far

