Student \#:

Name:

Write down answers in-between questions. Please answer using short sentences. The given spaces should be more than enough.

1. How many bytes are necessary to store a 1024×1024 color image with an alpha channel using 8 bits per channel?
2. What is a parametric form (or explicit equation) for the axis-aligned 2D ellipse of which center is at \boldsymbol{p}, width and height are a, b ? (hint: use parameter $t \in[0,2 \pi)$. e.g., $\{\mathrm{f}(\mathrm{t}) \mid t \in[0,2 \pi)\}$)
3. Write down the 4×4 rotation matrix M that maps the orthonormal 3D vectors $\boldsymbol{u}=\left(x_{u}, y_{u}, z_{u}\right), \boldsymbol{v}=\left(x_{v}, y_{v}, z_{v}\right)$, and $\boldsymbol{w}=\left(x_{w}, y_{w}, z_{w}\right)$, to orthonormal 3D vectors $\boldsymbol{a}=\left(x_{a}, y_{a}, z_{a}\right), \boldsymbol{b}=\left(x_{b}, y_{b}, z_{b}\right)$, and $\boldsymbol{c}=\left(x_{c}, y_{c}, z_{c}\right)$, so $M \boldsymbol{u}=\boldsymbol{a}, M \boldsymbol{v}=\boldsymbol{b}$, and $M \boldsymbol{w}=\boldsymbol{c}$.
4. Represent vector \boldsymbol{c} and \boldsymbol{d} in terms of vector \boldsymbol{a} and \boldsymbol{b} using the cross product operator (\times) and the length operator $(|\mid)$. Vector $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are in the same plane, \boldsymbol{d} is orthogonal to the other vectors, \boldsymbol{a} is orthogonal to \boldsymbol{c} and \boldsymbol{d}, and all vectors are unit vectors.

5. If the following 1D discrete filters are used to define 2D filters and applied to images, which filter goes with which operation? hints: assuming $a[i, j]=a_{1}[i] a_{1}[j]$, a/filtering operation can be defined using the convolution operator * as follows:
$\left.(a * b)[i, j]=\sum_{i^{\prime}, j^{\prime}} a\left[i^{\prime}, j^{\prime}\right] b\left[i-i^{\prime}, j-j^{\prime}\right]=\sum_{i^{\prime}} a_{1}\left[i^{\prime}\right]\left(\sum_{j^{\prime}} a_{1}(i)\right] b\left[i-i^{\prime}, j-j^{\prime}\right]\right)$, where 1D filter a_{1} is one of the followings.
simply Try
6. If we use each of the following 1D reconstruction filters to reconstruct a continuous function $g(x)$ from a sequence of samples $f[i]$ using continuous-discontinuous convolution, for which filters will $g(x)$ be C^{0} ?
For which filters will $g(x)$ be C^{1} ?
For which filters will $g(x)$ interpolate $f[i]$?
hints: the reconstructed function $g(x)$ is defined as $g(x)=\sum_{i} f[i] a(x-i)$ for a arbitrary sequence of samples $f[i]$ when each of the followings is $a(x)$.
the c^{k} continuity
of $g(x)$ is the
same as that

$$
\begin{array}{r}
\text { of the filter } \\
a\left(x^{\prime}\right)
\end{array}
$$

1.

$$
\begin{gathered}
\text { interpolate } \\
1,2,(3)^{\text {optioned }}
\end{gathered}
$$

2.
3.

$$
\sqrt{2-1: \sqrt{2}} \backslash C: 1,4
$$

$$
\begin{aligned}
& \left(c^{0}: 1,2,4\right. \\
& : 1,4 \\
& \begin{array}{l}
1,2,(3) \\
\text { Lave } \\
\text { at } 0 \text {, other } \\
\text { integers. }
\end{array}
\end{aligned}
$$

7. Bezier spline with the control points $(1,0),(1,2),(2,1),(0,1)$ will form a cusp, as shown here on the left:

a. Sketch plots of the coordinate functions $x(t)$ and $y(t)$ and their derivatives. Explain how you can tell that the cusp happens by looking at these plots.
b. What are the parametric (C^{k}) continuity and geometric ($\left.G^{k}\right)$ continuity at the cusp?
hints: a Bezier spline is defined using matrix [-1 $3-31 ; 3-630 ;-3300 ; 1000]$. Here ";" represents a new line (row separator). The bezier basis functions look like this:

$$
\begin{aligned}
& \text { The bezier basis functions look like this: } \\
& \left(t^{3} \quad t^{2} t\left(\begin{array}{ccc}
-1 & 3 & -3 \\
3 & -6 & 3 \\
-3 & 3 & 0 \\
1 & 0 & 0 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 2 \\
2 & 1 \\
0 & 1
\end{array}\right)\right. \\
& =\left(\begin{array}{lll}
t^{3} & t^{2} & t
\end{array}\right)\left(\begin{array}{cc}
-4 & 4 \\
3 & -9 \\
0 & 6 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
4(t) & g(t)
\end{array}\right)
\end{aligned}
$$

\therefore the above plot is $y(t)$,
and $x(t)$ is a ventrally mirrors version of $y(t)$. when $t .0 .5$
A+ the peak of $x(t), y(t)$,
the slope $x^{\prime}(t), y^{\prime}(t)=0$,

$$
\binom{\text { because }}{\left.y^{\prime} c t\right)=12 t^{2}-(8 t+6=6(2 t-1)(t-1)}
$$

and the sign of both $x^{\prime}(t), y^{\prime}(t)$ changes when $t=0.5$ Thus, the cusp.
appears.
8. When you look at the existing spline code, you see that it is using a sequence of segments, each defined by a quartic (fourth degree) spline with an unfamiliar splinebecause matrix. You plot the basis functions and you see the following curves:
(a) Which of the five control points (arbitrarily labeled A through E in the plot) will the curve pass through, and for what values of t ?
(b) Which control points affect the tangent to the curve at $t=0$? At $t=B, 5$? At $t=1 ? ~ t=0, \frac{1}{2}$,
(c) Does this spline have the convex hull property? How did you tell? \downarrow
D
oe not follow
convex hull

$$
\begin{aligned}
& \text { convex hull } \\
& \text { be cause there are negative }
\end{aligned}
$$

9. Suppose we have an image of a gray elephant, with an alpha matte to delineate foreground from background. The image is stored with pre-multiplied alpha.

a. If we accidentally use the image in a program that expects non-premultiplied alpha, withe edges come out too dark, about right, or too light if the background is: \rightarrow alpha will be multipl'red
(a) solid black $\quad\left(d_{B=1}, C_{B}=(0,0,0)\right)$
(b) solid white $\quad\left(\alpha_{s}=1, C_{\beta}=(1,1,1)\right)$
(c) about the same color as the elephant

Explain why by writing down the equations for the correct and incorrect results. twice.

Hints: using premultiplied alpha

$$
\mathrm{C}=\mathrm{A} \text { over } \mathrm{B} \text { becomes }
$$

(a)
(b) $C^{\prime}{ }_{C}=C_{A}^{\prime}+\left(1-\alpha_{A}\right)(1,1,1)=\alpha^{2} C_{A}+\left(1-\alpha_{A}\right)(1,1,1)$

$$
\left.<\left(\alpha C_{A}+\left(1-2_{N}\right)(1,1,1)\right]_{(}^{c} \begin{array}{c}
\text { correct } \\
\text { Ouswor }
\end{array}\right) \rightarrow \text { still too dark }
$$

(c) too dark no matter what color the elephant is! $\left(d^{2} C_{A}<\alpha C_{A}\right.$ fol

$$
\begin{aligned}
& \alpha_{c}=1 \quad\left(\text { became } d_{b}=1\right)
\end{aligned}
$$

10. EdgesOfVertex is a function that iterates through the list of half edges adjacent to vertex v . Fill in the blanks (???).

HEdge \{
HEdge pair, next;
Vertex v;
Face f;
\}
11. Briefly describe algorithms to reduce the artifacts caused by the minification (two algorithms) and magnification (one algorithm) of textures.

12. Construct a summed area table from the texture below, and explain how you can calculate the average value of the right half of the texture using the summed area table.

1	6	8	3					
0	0	3	7					
4	7	8	8					
5	0	9	9	\longrightarrow	1	7	15	18
:---:	:---:	:---:	:---:					
0	7	18	28					
5	18	37	55					
4	23	5	18					

$$
\begin{aligned}
\text { Sum: } T(4,4) & -T(4,0) \\
& -T(2,4) \\
& +T(2,0) \\
= & 78-23=
\end{aligned}
$$

13. Write down a sequence of numbers in the order that the k - d tree is traversed when checking intersections between a ray and the scene. Each number at an internal node represents the intersection test between the ray and the axis-aligned bounding box corresponding to the node. The numbers at the leaf nodes represents the intersection test between the ray and the primitives. The number at the arrow represents the tree traversal. Omit numbers that correspond to pruned operations (that is not executed). Do not exclude intersection tests that fails; for example, the correct answer is " 1 " for a ray that doesn't collide with the outer-most bounding box.

Ray 1: $\quad 1 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 7 \rightarrow 9 \rightarrow 11 \rightarrow B \rightarrow 10 \rightarrow 12$
Ray 2: $\quad 1 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow 4 \rightarrow 7 \rightarrow 9 \rightarrow 6 \rightarrow 8$
14. Briefly explain why area light sources generate soft shadows.

15. Briefly explain how a spline curve can be drawn to the screen using OpenGL.

$$
\begin{aligned}
& \text { First convert a curve to line segurauts by uniformly sampling } \\
& \text { sr recursively subdividing the spline curve. } \\
& \text { The resulting line segments canbe optionally converted } \\
& \text { to a triangle strip before sending to the graphics pipeline, }
\end{aligned}
$$

