
Notice

● Next Tuesday: Final exam
● Next Thursday: Guest speaker

– NHN platform team director
■ 권택순

– Will talk about the game development process
in NHN

– 자대생 출석체크 할 것임 .
– 한글 수업

Level of DetailLevel of Detail

David Luebke

University of Virginia

Level of DetailLevel of Detail

David Luebke

University of Virginia

Level of DetailLevel of Detail

David Luebke

University of Virginia

Level of DetailLevel of Detail

David Luebke

University of Virginia

Introduction

● Level of detail (LOD) is an important tool
for maintaining interactivity
– Focuses on the fidelity / performance tradeoff
– Not the only tool! Complementary with:

■ Occlusion culling
■ Image-based rendering [etc]

Level of Detail:
The Basic Idea

● The problem:
– Geometric datasets can be too complex to

render at interactive rates

● One solution:
– Simplify the polygonal geometry of small or

distant objects
– Known as Level of Detail or LOD

■ a.k.a. mesh reduction, multiresolution modeling, …

Level of Detail

● A recurring theme in computer graphics:
trade fidelity for performance
– Reduce level of detail of distant, small, or

unimportant objects

249,924 polys 62,480 polys 7,809 polys 975 polys

Level of Detail

● A recurring theme in computer graphics:
trade fidelity for performance
– Reduce level of detail of distant, small, or

unimportant objects

Level of Detail:
Motivation

● Big models!
– St. Matthew: 372 million polygons

– David: 1 billion polygons

C
ou

rt
es

y
D

ig
ita

l M
ic

he
la

ng
el

o
P

ro
je

ct

 Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail:
Traditional LOD In A Nutshell

● Create levels of detail (LODs) of objects:

● Distant objects use coarser LODs:

Level of Detail:
Traditional LOD In A Nutshell

Level of Detail:
The Big Questions

● How to represent and generate simpler
versions of a complex model?

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail:
The Big Questions

● When to use which LOD of an object?

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Traditional Approach:
Discrete Level of Detail

● Traditional LOD in a nutshell:
– Create LODs for each object separately

in a preprocess

– At run-time, pick each object’s LOD according
to the object’s distance (or
similar criterion)

● Since LODs are created offline at fixed
resolutions, we call this discrete LOD

Discrete LOD:
Advantages

● Simplest programming model; decouples
simplification and rendering
– LOD creation need not address real-time

rendering constraints
– Run-time rendering need only pick LODs

Discrete LOD:
Advantages

● Fits modern graphics hardware well
– Easy to compile each LOD into triangle strips,

display lists, vertex arrays, …

– These render much faster than unorganized
triangles on today’s hardware (3-5 x)

● So why use anything but discrete LOD?
● Answer: sometimes discrete LOD not

suited for drastic simplification
● Some problem cases:

– Terrain flyovers
– Volumetric isosurfaces
– Super-detailed range scans
– Massive CAD models

Discrete LOD:
Disadvantages

Drastic Simplification:
The Problem With Large Objects

Courtesy IBM and ACOG

Large objects must be subdivided

Drastic Simplification:
The Problem With Small Objects

Courtesy Electric Boat

Small objects must be combined

Drastic Simplification

● For drastic simplification:
– Large objects must be subdivided

– Small objects must be combined

● Difficult or impossible with
discrete LOD

● So what can we do?

Continuous Level of Detail

● Discrete LOD: create individual levels of
detail in a preprocess

● Continuous LOD: create data structure
from which a desired level of detail can be
extracted at run time.

● Edge collapsing introduced by [Hoppe93]Edge collapsing introduced by [Hoppe93]

a b c

edge collapse

vertex split

Continuous Level of Detail

● Edge collapsing introduced by [Hoppe93]Edge collapsing introduced by [Hoppe93]

a b

edge collapse

vertex split

Continuous Level of Detail

1 7 a b 8 9

A B C10

D

3

E

R

Vertex hierarchy

c

c

● Edge collapsing introduced by [Hoppe93]Edge collapsing introduced by [Hoppe93]

a b

edge collapse

vertex split

Continuous Level of Detail

1 7 a b 8 9

A B C10

D

3

E

R

A cut defines an LOD

c

c

Continuous LOD:
Advantages

● Better granularity better fidelity
– LOD is specified exactly, not chosen from a

few pre-created options

– Thus objects use no more polygons than
necessary, which frees up polygons for other
objects

– Net result: better resource utilization, leading
to better overall fidelity/polygon

Continuous LOD:
Advantages

● Better granularity smoother transitions
– Switching between traditional LODs can

introduce visual “popping” effect

– Continuous LOD can adjust detail gradually
and incrementally, reducing visual pops

View-Dependent LOD:
Examples

● Show nearby portions of object at higher
resolution than distant portions

View from eyepoint Birds-eye view

View-Dependent LOD:
Examples

● Show silhouette regions of object at
higher resolution than interior regions

View-Dependent LOD:
Advantages

● Even better granularity
– Allocates polygons where they are most

needed, within as well as among objects

– Enables even better overall fidelity

● Enables drastic simplification of
very large objects
– Example: stadium model

– Example: terrain flyover

Fundamental LOD issue:
where in the scene to
allocate detail?

● Run every frame on every object; keep it
fast

Choosing LODs

● Describe a simple method for the system
to choose LODs
– Assign each LOD a range of distances
– Calculate distance from viewer to object
– Use corresponding LOD

● How might we implement this in a scene-
graph based system?

Choosing LODs

● What’s wrong with this simple approach?
– Visual “pop” when switching LODs can be

disconcerting

– Requires someone to assign switching
distances by hand

– Correct switching distance may vary with field
of view, resolution, etc.

– Doesn’t maintain constant frame rate; lots of
objects still means slow frame times!

● What can we do about each of these?

Choosing LODs:
Maintaining constant frame rate

● A better (but harder) solution: predictive
LOD selection

● For each LOD estimate:
– Cost (rendering time)
– Benefit (importance to the image)

Choosing LODs:
Funkhouser & Sequin, SIGGRAPH 93

● Given a fixed time budget, select LODs to
maximize benefit within a cost constraint
– Variation of the knapsack problem
– What do you think the complexity is?

■ A: NP-Complete (like the 0-1 knapsack problem)

– In practice, use a greedy algorithm
■ Sort objects by benefit/cost ratio, pick in sorted

order until budget is exceeded
■ Guaranteed to achieve at least 50% optimal sol’n
■ Time: O(n lg n)
■ Can use incremental algorithm to exploit coherence

Generating LODs

● Simplification operator:
– Edge collapse

■ Full edge collapse
■ Better fidelity (show why)

■ Half edge collapse
■ Less memory
■ Sort vertices, tris into VAR array for fast rendering

■ Vertex-pair merge a.k.a. “virtual edge collapse”
■ Merge separate objects

Edge Collapse Algorithm

V1

V2 V2Collapse

Quadric Error Metric

● Minimize distance to all planes at a vertex
● Plane equation for each face:

0 :p =+++ DCzByAx

v

[]

⋅=⋅

1

z

y

x

DCBA
T vp

• Distance to vertex v :

Squared Distance
At a Vertex

∑
∈

=
)(

))((
vplanesp

TT vppv

∑
∈

=
)(

)(
vplanesp

TT vppv

vppv
vplanesp

TT

= ∑

∈)(

∑
∈

=∆
)(

2)()(
vplanesp

T vpv

Optimal Vertex Placement

● Each vertex has a quadric error metric Q
associated with it
– Error is zero for original vertices
– Error nonzero for vertices created by merge

operation(s)

● Minimize Q to calculate optimal coordinates for
placing new vertex
– Details in paper
– Authors claim 40-50% less error

View-Dependent LOD:
Algorithms

● Many good published algorithms:
– Progressive Meshes by Hoppe

[SIGGRAPH 96, SIGGRAPH 97, …]

– Hierarchical Dynamic Simplification by Luebke &
Erikson [SIGGRAPH 97]

– Multitriangulation by DeFloriani et al
– Others…

Temporal Coherence

● Exploit the fact that frame-to-frame changes are
small

● One example:
– Vertex tree

Unfolded
Nodes

Boundary Nodes

Exploiting
Temporal Coherence
● Vertex Tree

– Few nodes change per frame
– Don’t traverse whole tree
– Do local updates only

at boundary nodes

Optimizing For Rendering

• Idea: maintain geometry in coherent arrays

Active triangles Inactive triangles

Unfolded nodes Inactive nodesBoundary nodes

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Move Unfolded/Boundary Marker

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Swap D with F

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H L J K I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G K L J H I M N O P Q

Fold node D:
Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering:
Vertex Arrays

• Biggest win: vertex arrays

– Actually, keep separate parallel arrays for rendering
data (coords, colors, etc)

Unfolded nodes Inactive nodesBoundary nodes

Vertex array!

View-Dependent Versus
Discrete LOD
● View-dependent LOD is superior to traditional

discrete LOD when:
– Models contain very large individual objects (e.g.,

terrains)
– Simplification must be completely automatic (e.g.,

complex CAD models)
– Experimenting with view-dependent simplification

criteria

View-Dependent Versus
Discrete LOD
● Discrete LOD is often the better choice:

– Simplest programming model
– Reduced run-time CPU load
– Easier to leverage hardware:

■ Compile LODs into vertex arrays/display lists
■ Stripe LODs into triangle strips
■ Optimize vertex cache utilization and such

View-Dependent Versus
Discrete LOD
● Applications that may want to use:

– Discrete LOD
■ Video games (but much more on this later…)
■ Simulators
■ Many walkthrough-style demos

– Dynamic and view-dependent LOD
■ CAD design review tools
■ Medical & scientific visualization toolkits
■ Terrain flyovers (e.g. google earth)

Continuous LOD:
The Sweet Spot?

● Continuous LOD may be the right
compromise on modern PC hardware
– Benefits of fine granularity without the cost of

view-dependent evaluation
– Can be implemented efficiently with regard to

■ Memory
■ CPU
■ GPU

Summary: LOD Frameworks

● Discrete LOD
– Generate a handful of LODs for each object

● Continuous LOD (CLOD)
– Generate data structure for each object from which a

spectrum of detail can be extracted

● View-dependent LOD
– Generate data structure from which an LOD

specialized to the current view parameters can be
generated on the fly.

– One object may span multiple levels of detail

Implementation: VDSlib
A public-domain view-dependent simplification and rendering package

Available at http://vdslib.virginia.edu

	Slide 1
	Level of Detail
	Slide 3
	Slide 4
	Slide 5
	Introduction
	Level of Detail: The Basic Idea
	Slide 8
	Slide 9
	Level of Detail: Motivation
	Level of Detail: Traditional LOD In A Nutshell
	Slide 12
	Level of Detail: The Big Questions
	Slide 14
	Traditional Approach: Discrete Level of Detail
	Discrete LOD: Advantages
	Slide 17
	Drastic Simplification
	Continuous Level of Detail
	Continuous LOD: Advantages
	Slide 27
	Slide 29
	View-Dependent LOD: Advantages
	Choosing LODs: LOD Run-Time Management
	Choosing LODs
	Slide 33
	Choosing LODs: Maintaining constant frame rate
	Choosing LODs: Funkhouser & Sequin, SIGGRAPH 93
	Slide 36
	Squared Distance At a Vertex
	Optimal Vertex Placement
	View-Dependent LOD: Algorithms
	Temporal Coherence
	Optimizing For Rendering
	View-Dependent Versus Discrete LOD
	Slide 59
	Slide 60
	Continuous LOD: The Sweet Spot?
	Summary: LOD Frameworks

