
Notice

● Next Tuesday: Final exam
● Next Thursday: Guest speaker

– NHN platform team director
■ 권택순

– Will talk about the game development process 
in NHN

– 자대생 출석체크 할 것임 .
– 한글 수업
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Introduction

● Level of detail (LOD) is an important tool 
for maintaining interactivity
– Focuses on the fidelity / performance tradeoff
– Not the only tool!  Complementary with:

■ Occlusion culling
■ Image-based rendering [etc]



  

Level of Detail: 
The Basic Idea

● The problem: 
– Geometric datasets can be too complex to 

render at interactive rates

● One solution:
– Simplify the polygonal geometry of small or 

distant objects
– Known as Level of Detail or LOD

■ a.k.a. mesh reduction, multiresolution modeling, …



  

Level of Detail

● A recurring theme in computer graphics: 
trade fidelity for performance
– Reduce level of detail of distant, small, or 

unimportant objects

249,924 polys 62,480 polys 7,809 polys 975 polys



  

Level of Detail

● A recurring theme in computer graphics: 
trade fidelity for performance
– Reduce level of detail of distant, small, or 

unimportant objects



  

Level of Detail:
Motivation

● Big models! 
– St. Matthew: 372 million polygons

– David: 1 billion polygons
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  Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys

Level of Detail:
Traditional LOD In A Nutshell

● Create levels of detail (LODs) of objects:



  

● Distant objects use coarser LODs:

Level of Detail:
Traditional LOD In A Nutshell



  

Level of Detail:
The Big Questions

● How to represent and generate simpler 
versions of a complex model?

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys



  

Level of Detail:
The Big Questions

● When to use which LOD of an object?

Courtesy Stanford 3D Scanning Repository

69,451 polys 2,502 polys 251 polys 76 polys



  

Traditional Approach: 
Discrete Level of Detail

● Traditional LOD in a nutshell:
– Create LODs for each object separately 

in a preprocess

– At run-time, pick each object’s LOD according 
to the object’s distance (or 
similar criterion)

● Since LODs are created offline at fixed 
resolutions, we call this discrete LOD



  

Discrete LOD:
Advantages

● Simplest programming model; decouples 
simplification and rendering
– LOD creation need not address real-time 

rendering constraints
– Run-time rendering need only pick LODs



  

Discrete LOD:
Advantages

● Fits modern graphics hardware well
– Easy to compile each LOD into triangle strips, 

display lists, vertex arrays, …

– These render much faster than unorganized 
triangles on today’s hardware (3-5 x)



  

● So why use anything but discrete LOD?
● Answer: sometimes discrete LOD not 

suited for drastic simplification
● Some problem cases:

– Terrain flyovers
– Volumetric isosurfaces
– Super-detailed range scans
– Massive CAD models

Discrete LOD:
Disadvantages



  

Drastic Simplification: 
The Problem With Large Objects

Courtesy IBM and ACOG

Large objects must be subdivided



  

Drastic Simplification: 
The Problem With Small Objects

Courtesy Electric Boat

Small objects must be combined



  

Drastic Simplification

● For drastic simplification:
– Large objects must be subdivided

– Small objects must be combined

● Difficult or impossible with 
discrete LOD

● So what can we do?



  

Continuous Level of Detail

● Discrete LOD: create individual levels of 
detail in a preprocess

● Continuous LOD: create data structure 
from which a desired level of detail can be 
extracted at run time.



● Edge collapsing introduced by [Hoppe93]Edge collapsing introduced by [Hoppe93]
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Continuous Level of Detail
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● Edge collapsing introduced by [Hoppe93]Edge collapsing introduced by [Hoppe93]
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Continuous LOD:
Advantages

● Better granularity  better fidelity
– LOD is specified exactly, not chosen from a 

few pre-created options

– Thus objects use no more polygons than 
necessary, which frees up polygons for other 
objects 

– Net result: better resource utilization, leading 
to better overall fidelity/polygon



  

Continuous LOD:
Advantages

● Better granularity  smoother transitions
– Switching between traditional LODs can 

introduce visual “popping” effect

– Continuous LOD can adjust detail gradually 
and incrementally, reducing visual pops



  

View-Dependent LOD: 
Examples

● Show nearby portions of object at higher 
resolution than distant portions

View from eyepoint Birds-eye view



  

View-Dependent LOD: 
Examples

● Show silhouette regions of object at 
higher resolution than interior regions



  

View-Dependent LOD:
Advantages

● Even better granularity
– Allocates polygons where they are most 

needed, within as well as among objects

– Enables even better overall fidelity

● Enables drastic simplification of 
very large objects
– Example: stadium model

– Example: terrain flyover



  

Fundamental LOD issue: 
where in the scene to 
allocate detail?

● Run every frame on every object; keep it 
fast



  

Choosing LODs

● Describe a simple method for the system 
to choose LODs
– Assign each LOD a range of distances 
– Calculate distance from viewer to object
– Use corresponding LOD

● How might we implement this in a scene-
graph based system?



  

Choosing LODs

● What’s wrong with this simple approach?
– Visual “pop” when switching LODs can be 

disconcerting

– Requires someone to assign switching 
distances by hand

– Correct switching distance may vary with field 
of view, resolution, etc.

– Doesn’t maintain constant frame rate; lots of 
objects still means slow frame times!

● What can we do about each of these?



  

Choosing LODs:
Maintaining constant frame rate

● A better (but harder) solution: predictive 
LOD selection

● For each LOD estimate:
– Cost (rendering time) 
– Benefit (importance to the image) 



  

Choosing LODs:
Funkhouser & Sequin, SIGGRAPH 93

● Given a fixed time budget, select LODs to 
maximize benefit within a cost constraint
– Variation of the knapsack problem
– What do you think the complexity is?

■ A: NP-Complete (like the 0-1 knapsack problem)

– In practice, use a greedy algorithm
■ Sort objects by benefit/cost ratio, pick in sorted 

order until budget is exceeded
■ Guaranteed to achieve at least 50% optimal sol’n
■ Time: O(n lg n) 
■ Can use incremental algorithm to exploit coherence



  

Generating LODs

● Simplification operator:
– Edge collapse

■ Full edge collapse
■ Better fidelity (show why)

■ Half edge collapse
■ Less memory
■ Sort vertices, tris into VAR array for fast rendering

■ Vertex-pair merge a.k.a. “virtual edge collapse”
■ Merge separate objects



  

Edge Collapse Algorithm

V1

V2 V2Collapse



  

Quadric Error Metric

● Minimize distance to all planes at a vertex
● Plane equation for each face:
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Squared Distance 
At a Vertex
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Optimal Vertex Placement

● Each vertex has a quadric error metric Q 
associated with it
– Error is zero for original vertices
– Error nonzero for vertices created by merge 

operation(s)

● Minimize Q to calculate optimal coordinates for 
placing new vertex
– Details in paper
– Authors claim 40-50% less error



  

View-Dependent LOD: 
Algorithms

● Many good published algorithms:
– Progressive Meshes by Hoppe 

[SIGGRAPH 96, SIGGRAPH 97, …]

– Hierarchical Dynamic Simplification by Luebke & 
Erikson [SIGGRAPH 97]

– Multitriangulation by DeFloriani et al
– Others…



  

Temporal Coherence

● Exploit the fact that frame-to-frame changes are 
small

● One example:
– Vertex tree



  

Unfolded
Nodes

Boundary Nodes

Exploiting 
Temporal Coherence
● Vertex Tree

– Few nodes change per frame
– Don’t traverse whole tree
– Do local updates only 

at boundary nodes



  

Optimizing For Rendering

• Idea: maintain geometry in coherent arrays

Active triangles Inactive triangles

Unfolded nodes Inactive nodesBoundary nodes



  

Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C D E F G H I J K L M N O P Q

Fold node D:
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Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes

A B C F E D G H I J K L M N O P Q

Fold node D:
Move Unfolded/Boundary Marker



  

Optimizing For Rendering

• Idea: use swaps to maintain coherence
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Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes
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Fold node D:
Deactivate D’s children (swap w/ last boundary node)
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Optimizing For Rendering

• Idea: use swaps to maintain coherence

Unfolded nodes Inactive nodesBoundary nodes
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Fold node D:
Deactivate D’s children (swap w/ last boundary node)



  

Optimizing For Rendering:
Vertex Arrays

• Biggest win: vertex arrays

– Actually, keep separate parallel arrays for rendering 
data (coords, colors, etc)

Unfolded nodes Inactive nodesBoundary nodes

Vertex array!



  

View-Dependent Versus 
Discrete LOD
● View-dependent LOD is superior to traditional 

discrete LOD when:
– Models contain very large individual objects (e.g., 

terrains)
– Simplification must be completely automatic (e.g., 

complex CAD models)
– Experimenting with view-dependent simplification 

criteria



  

View-Dependent Versus 
Discrete LOD
● Discrete LOD is often the better choice:

– Simplest programming model
– Reduced run-time CPU load
– Easier to leverage hardware:

■ Compile LODs into vertex arrays/display lists
■ Stripe LODs into triangle strips
■ Optimize vertex cache utilization and such



  

View-Dependent Versus 
Discrete LOD
● Applications that may want to use:

– Discrete LOD
■ Video games (but much more on this later…)
■ Simulators
■ Many walkthrough-style demos

– Dynamic and view-dependent LOD
■ CAD design review tools
■ Medical & scientific visualization toolkits
■ Terrain flyovers (e.g. google earth)



  

Continuous LOD: 
The Sweet Spot?

● Continuous LOD may be the right 
compromise on modern PC hardware
– Benefits of fine granularity without the cost of 

view-dependent evaluation
– Can be implemented efficiently with regard to

■ Memory
■ CPU 
■ GPU



  

Summary: LOD Frameworks

● Discrete LOD
– Generate a handful of LODs for each object

● Continuous LOD (CLOD)
– Generate data structure for each object from which a 

spectrum of detail can be extracted

● View-dependent LOD
– Generate data structure from which an LOD 

specialized to the current view parameters can be 
generated on the fly.  

– One object may span multiple levels of detail

Implementation: VDSlib
A public-domain view-dependent simplification and rendering package

Available at http://vdslib.virginia.edu
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