Notice

Next Tuesday: Final exam

Next Thursday:. Guest speaker

— NHN platform team director
m 7 EHZ

L Y L

— Will talk about the game development process
iIn NHN
- Al E4A I gAY .

Sl A
- o2 &Y

Introduction

e Level of detail (LOD) is an important tool
for maintaining interactivity
— Focuses on the fidelity / performance tradeoff

— Not the only tool! Complementary with:
= QOcclusion culling
= |mage-based rendering [etc]

evel of Detall:
The Basic Idea

 The problem:

— Geometric datasets can be too complex to
render at interactive rates

e One solution:

— Simplify the polygonal geometry of small or
distant objects

— Known as Level of Detail or LOD
= a.k.a. mesh reduction, multiresolution modeling, ...

Level of Detall

e A recurring theme in computer graphics:
trade fidelity for performance

— Reduce level of detall of distant, small, or
unimportant objects

249,924 polys 62,480 polys 7,809 polys 975 polys

Level of Detall

e A recurring theme in computer graphics:
trade fidelity for performance

— Reduce level of detall of distant, small, or
unimportant objects

| evel of Detall:
Motivation

* Big models!
— St. Matthew: 372 million polygons
— David: 1 billion polygons

" Courtesy Digital Michelangelo Project

Level of Detall:
Traditional LOD In A Nutshell

e Create levels of detail (LODs) of objects:

69,451 polys 2,502 polys 251 polys 76 polys

Courtesy Stanford 3D Scanning Repository

Level of Detall:
Traditional LOD In A Nutshell

e Distant objects use coarser LODs:

Level of Detail:
The Big Questions

 How to represent and generate simpler
versions of a complex model?

69,451 polys 2,502 polys 251 polys 76 polys

Courtesy Stanford 3D Scanning Repository

Level of Detail:
The Big Questions

e When to use which LOD of an object?

69,451 polys 2,502 polys 251 polys 76 polys

Courtesy Stanford 3D Scanning Repository

Traditional Approach:

Discrete Level of Detall

e Traditional LOD in a nutshell:

— Create LODs for each object separately
In a preprocess

— At run-time, pick each object’'s LOD according
to the object’s distance (or
similar criterion)
e Since LODs are created offline at fixed
resolutions, we call this discrete LOD

Discrete LOD:

Advantages

e Simplest programming model; decouples
simplification and rendering

— LOD creation need not address real-time
rendering constraints

— Run-time rendering need only pick LODs

Discrete LOD:

Advantages

e Fits modern graphics hardware well

— Easy to compile each LOD into triangle strips,
display lists, vertex arrays, ...

— These render much faster than unorganized
triangles on today’s hardware (3-5 x)

Discrete LOD:

Disadvantages

e S0 why use anything but discrete LOD?

e Answer: sometimes discrete LOD not
suited for drastic simplification

e Some problem cases:
— Terrain flyovers
— Volumetric isosurfaces
— Super-detailed range scans
— Massive CAD models

Drastic Simplification:
The Problem With Large Objects

Large objects must be subdivided

N ¥ Ty,
. 7, I P O P Y

i [
wy
L[~ .t]
e -

L
R

. ———— 5
R A T I R R N
I R I R R N

=

| =
=15}
—1

Courtesy IBM and ACOG

Drastic Simplification:
The Problem With Small Objects

Small objects must be combined

Courtesy Electric Boat

Drastic Simplification

e For drastic simplification:
— Large objects must be subdivided
— Small objects must be combined

e Difficult or impossible with
discrete LOD

e So what can we do?

Continuous Level of Detalil

e Discrete LOD: create individual levels of
detall in a preprocess

e Continuous LOD: create data structure
from which a desired level of detail can be

extracted af run time.

Continuous Level of Detalil

e Edge collapsing introduced by [Hoppe93]

edge collapse

T T
a _/
vertex split

Continuous Level of Detalil

e Edge collapsing introduced by [Hoppe93]
“ edge collapse R
T T
a ‘r \ N | D E
vertex split
| 0w @ C® @

Continuous Level of Detalil

e Edge collapsing introduced by [Hoppe93]

“ edge collapse R
T T

a ‘r \ N

vertex split

Continuous LOD:

Advantages

e Better granularity - better fidelity

— LOD is specified exactly, not chosen from a
few pre-created options

— Thus objects use no more polygons than
necessary, which frees up polygons for other
objects

— Net result: better resource utilization, leading
to better overall fidelity/polygon

Continuous LOD:

Advantages

o Better granularity - smoother transitions

— Switching between traditional LODs can
introduce visual “popping” effect

— Continuous LOD can adjust detail gradually
and incrementally, reducing visual pops

View-Dependent LOD:

Examples

e Show nearby portions of object at higher
resolution than distant portions

View from eyepoint Birds-eye view

View-Dependent LOD:

Examples

e Show silhouette regions of object at
higher resolution than interior regions

View-Dependent LOD:

Advantages

 Even better granularity

— Allocates polygons where they are most
needed, within as well as among objects

— Enables even better overall fidelity
 Enables drastic simplification of

very large objects

— Example: stadium model

— Example: terrain flyover

Fundamental LOD issue:
where In the scene to
allocate detail?

* Run every frame on every object; keep it
fast

Choosing LODs

e Describe a simple method for the system
to choose LODs
— Assign each LOD a range of distances
— Calculate distance from viewer to object
— Use corresponding LOD

* How might we /mplement th/s in a scene-
graph based system? 1

tfv
U
P\

e R

Choosing LODs

e What’s wrong with this simple approach?

— Visual “pop” when switching LODs can be
disconcerting

— Requires someone to assign switching
distances by hand

— Correct switching distance may vary with field
of view, resolution, etc.

— Doesn’t maintain constant frame rate; lots of
objects still means slow frame times!

e What can we do about each of these?

Choosing LODs:

Maintaining constant frame rate

e A better (but harder) solution: predictive
LOD selection

 For each LOD estimate:
— Cost (rendering time)
— Benefit (importance to the image)

Choosing LODs:

Funkhouser & Sequin, SIGGRAPH 93

e Given a fixed time budget, select LODs to
maximize benefit within a cost constraint

— Variation of the knapsack problem

— What do you think the complexity is?
= A: NP-Complete (like the 0-1 knapsack problem)

— In practice, use a greedy algorithm

= Sort objects by benefit/cost ratio, pick in sorted
order until budget is exceeded

= Guaranteed to achieve at least 50% optimal sol'n
= Time: O(nlg n)
= Can use incremental algorithm to exploit coherence

Generating LODs

e Simplification operator:

- Edge collapse
= Full edge collapse
= Better fidelity (show why)

= Half edge collapse

= Less memory

= Sort vertices, tris into VAR array for fast rendering
= Vertex-pair merge a.k.a. “virtual edge collapse”

= Merge separate objects

Quadric Error Metric

 Minimize distance to all planes at a vertex
* Plane equation for each face:

e

Distance to vertex v :

Sqguared Distance
At a Vertex

Avy= D(p'v)’

pUplanes(v)

= Y0 ')

pUplanes(v)

= SV (pp v

pUplanes(v)

— r
=Y
Uplanes(v)

Optimal Vertex Placement

e Each vertex has a quadric error metric Q
associated with it

— Error is zero for original vertices
— Error nonzero for vertices created by merge
operation(s)
 Minimize Q to calculate optimal coordinates for
placing new vertex
— Detalls in paper
— Authors claim 40-50% less error

View-Dependent LOD:
Algorithms

 Many good published algorithms:

- Progressive Meshes by Hoppe
[SIGGRAPH 96, SIGGRAPH 97, ...]

— Hierarchical Dynamic Simplification by Luebke &
Erikson [SIGGRAPH 97]

— Multitriangulation by DeFloriani et al
— Others...

Temporal Coherence

e Exploit the fact that frame-to-frame changes are
small

* One example:
— Vertex tree

Exploiting
Temporal Coherence

* Vertex Tree
— Few nodes change per frame
— Don’t traverse whole tree

— Do local updates only
at boundary nodes

Unfolded
Nodes

Boundary Nodes

Optimizing For Rendering

ldea: maintain geometry in coherent arrays

Active triangles \ Inactive triangles

Unfolded nodes 1 Boundary nodes Inactive nodes

Optimizing For Rendering
ldea: use swaps to maintain coherence

Inactive nodes
v|njo]r|al

Unfolded nodes
REBEEE

Boundary nodes
cln|1|Jfx]L

Fold node D:

Optimizing For Rendering
ldea: use swaps to maintain coherence

Inactive nodes
v|njo]r|al

Unfolded nodes
REBEEE

Boundary nodes
cln|1|Jfx]L

Fold node D:
Swap D with F

Optimizing For Rendering
ldea: use swaps to maintain coherence

Inactive nodes
v|njo]r|al

(alelc|o|e|Fle|H|1]]x|L

Unfolded nodeSJ Boundary nodes

Fold node D:
Swap D with F

Optimizing For Rendering

ldea: use swaps to maintain coherence
Unfolded nodes
DEE

Fold node D:
Swap D with F

Inactive nodes
v|njo]r|al

Boundary nodes
cln|1|Jfx]L

Optimizing For Rendering
ldea: use swaps to maintain coherence

Inactive nodes
v|njo]r|al

Unfolded nodes
REEEE

Boundary nodes
ofc|H] 1 [Jfx]|L

Fold node D:
Move Unfolded/Boundary Marker

Optimizing For Rendering

ldea: use swaps to maintain coherence
Unfolded nodes
DEE

Fold node D:
Swap D with F

Inactive nodes
v|njo]r|al

Boundary nodes
cln|1|Jfx]L

Optimizing For Rendering
ldea: use swaps to maintain coherence

Unfolded nodes
REEEE

D‘G‘H‘ I ‘J‘K‘L M‘N‘O‘P‘Q‘

Boundary nodeSJ Inactive nodes

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering

ldea: use swaps to maintain coherence
Boundary nodes
o]

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

Inactive nodes
v|njo]r|al

Unfolded nodes
REEEE

Optimizing For Rendering
ldea: use swaps to maintain coherence

Inactive nodes
JENEEE

Unfolded nodes
REEEE

Boundary nodes
ofc|H]L ||k

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering
ldea: use swaps to maintain coherence

Unfolded nodes
REEEE

Boundary nodes Inactive nodes
D‘G‘H‘L‘J‘K I ‘M‘N‘O‘P‘Q‘

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering

ldea: use swaps to maintain coherence
Boundary nodes Inactive nodes
0| m[nfo]r]e]

Fold node D:

Deactivate D’s children (swap w/ last boundary node)

Unfolded nodes
REEEE

Optimizing For Rendering

ldea: use swaps to maintain coherence

Unfolded nodes jBoundary nodes Inactive nodes
(alelc|rle|o]e|x|c]a|n|1 [m]|n]o|r|a]
Fold node D:

Deactivate D’s children (swap w/ last boundary node)

Optimizing For Rendering:
Vertex Arrays

Biggest win: vertex arrays

Unfolded nodes J Boundary nodes Inactive nodes

- J
h'd

Vertex array!
Actually, keep separate parallel arrays for rendering

data (coords, colors, etc)

View-Dependent Versus
Discrete LOD

* View-dependent LOD is superior to traditional
discrete LOD when:

— Models contain very large individual objects (e.g.,
terrains)

— Simplification must be completely automatic (e.g.,
complex CAD models)

— Experimenting with view-dependent simplification
criteria

View-Dependent Versus
Discrete LOD

e Discrete LOD is often the better choice:
— Simplest programming model
— Reduced run-time CPU load

— Easier to leverage hardware:
= Compile LODs into vertex arrays/display lists
= Stripe LODs into triangle strips
= Optimize vertex cache utilization and such

View-Dependent Versus
Discrete LOD

e Applications that may want to use:

— Discrete LOD
= Video games (but much more on this later...)
= Simulators
= Many walkthrough-style demos

— Dynamic and view-dependent LOD
= CAD design review tools

= Medical & scientific visualization toolkits
= Terrain flyovers (e.g. google earth)

Continuous LOD:
The Sweet Spot?

e Continuous LOD may be the right
compromise on modern PC hardware

— Benefits of fine granularity without the cost of
view-dependent evaluation

— Can be implemented efficiently with regard to
= Memory

= CPU
= GPU

Summary: LOD Frameworks

e Discrete LOD

— Generate a handful of LODs for each object

e Continuous LOD (CLOD)

— Generate data structure for each object from which a
spectrum of detail can be extracted

* View-dependent LOD

— Generate data structure from which an LOD
specialized to the current view parameters can be
generated on the fly.

— One object may span multiple levels of detail
Implementation:

A public-domain view-dependent simplification and rendering package

Available at

	Slide 1
	Level of Detail
	Slide 3
	Slide 4
	Slide 5
	Introduction
	Level of Detail: The Basic Idea
	Slide 8
	Slide 9
	Level of Detail: Motivation
	Level of Detail: Traditional LOD In A Nutshell
	Slide 12
	Level of Detail: The Big Questions
	Slide 14
	Traditional Approach: Discrete Level of Detail
	Discrete LOD: Advantages
	Slide 17
	Drastic Simplification
	Continuous Level of Detail
	Continuous LOD: Advantages
	Slide 27
	Slide 29
	View-Dependent LOD: Advantages
	Choosing LODs: LOD Run-Time Management
	Choosing LODs
	Slide 33
	Choosing LODs: Maintaining constant frame rate
	Choosing LODs: Funkhouser & Sequin, SIGGRAPH 93
	Slide 36
	Squared Distance At a Vertex
	Optimal Vertex Placement
	View-Dependent LOD: Algorithms
	Temporal Coherence
	Optimizing For Rendering
	View-Dependent Versus Discrete LOD
	Slide 59
	Slide 60
	Continuous LOD: The Sweet Spot?
	Summary: LOD Frameworks

