

Collision Detection

(c) Steve Rotenberg, UCSD

HW2

 How to implement precise dragging

Cursor
ray

Pick location

HW2

 How to implement precise dragging

Cursor
ray

Pick location Dragging
plane

HW2

 How to implement precise dragging

Cursor
ray

New pick
location

Dragging
plane

New
cursor
ray

HW2

 How to implement precise dragging

Cursor
ray

New pick
location

Dragging
plane

New
cursor
ray

More information on the hanyang portal

How to compute pick location

Cursor
ray

Pick location

Consider this case!

Curso
r

ray

Pick location

Collision Detection & Response

 Rigid-object colliding with
another rigid object is
relatively easy

 Cloth colliding with rigid
objects is tricky

 Cloth colliding with itself is
even trickier

Collision Detection
 Applications

 Physics simulation
 Ray-tracing
 User-interactions
 Games (Path-planning, AI, etc ...)

 Main subjects
 Intersection testing (triangles, spheres, lines…)
 Optimization structures (octree, BSP…)
 Pair reduction (reducing N2 object pair testing)

Intersection Testing

 General goals: given two objects with current
and previous orientations specified, determine if,
where, and when the two objects intersect

 Alternative: given two objects with only current
orientations, determine if they intersect

Primitives

 We often deal with various different ‘primitives’
that we describe our geometry with. Objects are
constructed from these primitives

 Examples
 Triangles
 Spheres
 Cylinders
 AABB = axis aligned bounding box
 OBB = oriented bounding box

 At the heart of the intersection testing are
various primitive-primitive tests

Particle Collisions

 The problem of testing if particles collide with
solid objects had already been covered in the
ray-tracing chapter.
 A particle can be treated as a line segment

from it’s previous position to it’s current
position

 If a particle is colliding against static objects,
then we just need to test if the line segment
intersects the object

 Colliding against moving objects requires some
additional modifications that we will look at

Segment vs. Triangle

 Does segment ab intersect triangle v0v1v2 ?

•
v0

x

a

b

v1

v2

Segment vs. Triangle

 Is point x inside the triangle?

 (x-v0)·((v2-v0)×n) > 0
 Test all 3 edges

x
v0

v1

v2

v2-v0

(v2-v0)×n

x-v0 •

Faster Way

 Reduce to 2D: remove smallest dimension
 Compute barycentric coordinates

x' =x-v0

e1=v1-v0

e2=v2-v0

α=(x'×e2)/(e1×e2)
β=(x'×e1)/(e1×e2)

 Reject if α<0, β<0 or α+β >1

x
v0

v1

v2

α

β

Segment vs. Mesh

 To test a line segment against a mesh of
triangles, simply test the segment against each
triangle

 Often, we are interested in only the ‘first’ hit
along the segment from a to b.

 Testing against lots of triangles in a large mesh
can be time consuming. We will look at ways to
optimize this later

Segment vs. Moving Mesh

 M0 is the object’s matrix at time t0

 M1 is the matrix at time t1

 Compute delta matrix:

M1=M0·MΔ

MΔ= M0-1·M1

 Transform a by MΔ

 a'=a·MΔ

 Test segment a'b against object with matrix M1

Segment vs. Moving Mesh

 M0 is the object’s matrix at time t0

 M1 is the matrix at time t1

 Compute delta matrix:

M1=M0·MΔ

MΔ= M0-1·M1

 Transform a by MΔ

 a'=a·MΔ

 Test segment a'b against object with matrix M1

Triangle vs. Triangle

 Given two triangles: T1 (u0u1u2) and T2 (v0v1v2)

u0

u2

u1

v0

v1

v2

T1

T2

1. Point-to-Face test

 Given two triangles: T1 (u0u1u2) and T2 (v0v1v2)

u0

u2

u1

v0

v1

v2

T1

T2

1. Point-to-Face test

Step 1: Compute plane equations

n2=(v1-v0)×(v2-v0)

d2=-n2·v0

v0

v1

v2

v1-v0

v2-v0

n

1. Point-to-Face test

 Step 2: Compute signed distances of T1 vertices to

plane of T2:

di=n2·ui+d2 (i=0,1,2)
 Reject if all di<0 or all di>0
 Repeat for vertices of T2 against plane of T1

d0

u0

2. Face-to-Point test

 Given two triangles: T1 (u0u1u2) and T2 (v0v1v2)

u0

u2

u1

v0

v1

v2

T1

T2

Triangle vs. Triangle

 Step 3: Find intersection points
 Step 4: Determine if segment pq is inside

triangle or intersects triangle edge

p q

Mesh vs. Mesh

 Geometry: points, edges, faces
 Collisions: p2p, p2e, p2f, e2e, e2f, f2f
 Relevant ones: p2f, e2e (point to face &

edge to edge)
 Multiple simultaneous collisions

Moving Mesh vs. Moving Mesh

 Two options: ‘point sample’ and ‘extrusion’
 Point sample:

 If objects intersect at final positions, do a binary
search backwards to find the time when they first hit
and compute the intersection

 This approach can tend to miss thin objects

 Extrusion:
 Test ‘4-dimensional’ extrusions of objects
 In practice, this can be done using only 3D math

Moving Meshes: Extrusion

 Use ‘delta matrix’ trick to simplify problem so
that one mesh is moving and one is static

 Test moving vertices against static faces (and
the opposite, using the other delta matrix)

 Test moving edges against static edges (moving
edges form a quad (two triangles))

Intersection Issues

 Performance
 Memory
 Accuracy
 Floating point precision

Collision Optimization

Bounding volumes

 Enclose complex objects within a simple to
intersect objects
 If the ray does not intersect the simple object then its

contents can be ignored

 The likelihood that it will strike the object depends
on how tightly the volume surrounds the object.
 Spheres are simple, but not tight
 Axis-aligned bounding boxes often better
 Can use nested or hierarchical bounding volumes

Optimization Structures

 BV, BVH (bounding volume hierarchies)
 Octree
 KD tree
 BSP (binary separating planes)
 OBB tree (oriented bounding boxes- a popular form of

BVH)
 K-dop tree

 Uniform grid
 Hashing
 Dimension reduction

Bounding Volume Hierarchies

 Organize bounding volumes as a tree
 Each ray starts with the scene BV and

traverses down through the hierarchy

Sphere trees [Whitted80]
 Cheap to compute
 Cheap test
 Potentially very bad fit

OBB Trees

 Oriented Bounding Box
 Fairly cheap to compute
 Fairly Cheap test
 Generally fairly tight

K-Dops
 More expensive to compute
 Fairly cheap test
 Can be tighter than OBB

Spatial Subdivision
 Idea: Devide space into subregions

 Place objects within a subregion into a list
 Only traverse the lists of subregions that the ray

passes through
 “Mailboxing” used to avoid multiple test with

objects in multiple regions
 Many types

 Uniform grid
 Octree
 BSP tree
 kd-tree

Uniform Grids

Octrees

KD Trees

BSP Trees

Overview of kd-Trees

 Binary spatial subdivision
 (special case of BSP tree)

 Split planes aligned on

main axis
 Inner nodes: subdivision

planes
 Leaf nodes: triangles

Example

Example with triangles
overlapping the split

Ray Tracing with kd tree

 Goal: find closest hit with scene
 Traverse tree front to back
 (starting from root)

 At each node:
 If leaf: intersect with triangles
 If inner: traverse deeper

Testing BVH’s

TestBVH(A,B) {
if(not overlap(ABV, BBV) return FALSE;

else if(isLeaf(A)) {
if(isLeaf(B)) {
 for each triangle pair (Ta,Tb)

if(overlap(Ta,Tb)) AddIntersectionToList();
}
else {
 for each child Cb of B

TestBVH(A,Cb);
}

}
else {

for each child Ca of A
 TestBVH(Ca,B)

}
}

Optimization Structures

 All of these optimization structures can be
used in either 2D or 3D

 Packing in memory may affect caching
and performance

Pair Reduction

 At a minimum, any moving object should have some sort
of bounding sphere (or other simple primitive)

 Before a pair of objects is tested in any detail, we can
quickly test if their bounding spheres intersect

 When there are lots of moving objects, even this quick
bounding sphere test can take too long, as it must be
applied N2 times if there are N objects

 Reducing this N2 problem is called pair reduction
 Pair testing isn’t a big issue until N>50 or so…

Appendix

Collision Response

Impact vs. Contact

 In physics simulation, there is usually a distinction
between impacts and contacts

 Impacts are instantaneous collisions between objects
where an impulse must be generated to prevent the
velocities at the impact location from allowing the objects
to interpenetrate

 Contacts are persistent and exist over some range of
time. In a contact situation, the closing velocities at the
contact location should already be 0, so forces are
needed to keep the objects from accelerating into each
other. With rigid bodies, contacts can include fairly
complex situations like stacking, rolling, and sliding

Impact vs. Contact

 Neither impact nor contact is particularly easy to
handle correctly

 In the case of particles, it’s not so bad, but with
rigid bodies, it can be tough

 As we are mainly just concerned with the physics
of particles, we will not worry about the more
complex issues for now

 Also, we will just focus on handling impacts, as
they are generally needed first. Continuous
contact will just be handled by allowing particles
to impact frame after frame

Impacts

 When two solid objects collide (such as a particle
hitting a solid surface), forces are generated at
the impact location that prevent the objects from
interpenetrating

 These forces act over a very small time and as
far as the simulation is concerned, it’s easiest to
treat it as an instantaneous event

 Therefore, instead of the impact applying a force,
we must use an impulse

Impulse

 An impulse can be thought of as the integral of a force
over some time range, which results in a finite change in
momentum:

 An impulse behaves a lot like a force, except instead of
affecting an object’s acceleration, it directly affects the
velocity

 Impulses also obey Newton’s Third Law, and so objects
can exchange equal and opposite impulses

 Also, like forces, we can compute a total impulse as the
sum of several individual impulses

j=∫ f dt= Δp

Compression & Restitution

 The collision can be thought of as having two phases:
compression & restitution

 In the compression phase, the energy of the two objects
is changed from kinetic energy of motion into
deformation energy in the solids

 If the collision is perfectly inelastic (e=0), then all of the
energy is lost and there will be no relative motion along
the collision normal after the collision

 If the collision is perfectly elastic (e=1), then all of the
deformation energy will be turned back into kinetic
energy in the restitution phase and the velocity along the
normal will be the opposite of what it was before the
collision

Compression & Restitution

Collisions

 Consider the case of a particle colliding
with a heavy object. The object is moving
with velocity vobj

 The particle has a velocity of v before the
collision and collides with the surface with
a unit normal n

 We want to find the collision impulse j
applied to the particle during the collision

Collisions

• v

vobj

n
v−v obj

 We take the difference
between the two velocities
and dot that with the normal
to find the closing velocity

vclose=(v−v obj)⋅n

Collisions

 Let’s first consider a collision with no friction
 The collision impulse will be perpendicular to the

collision plane (i.e., along the normal) and will be
large enough to stop the particle (at least)

j=−(1+e)mv closen

Friction

 The Coulomb friction model says:

f dynamic= μd∣f normal∣e

f static≤ μs∣f normal∣e

v

f friction

f normal

μd : dynamic friction coefficient

μs : static friction coefficient

Friction

 As we are not considering static contact, we will
just use a single dynamic friction equation

 For an impact, we can just compute the impulse
in the exact same way as we would for dynamic
friction

 We can use the magnitude of the elasticity
impulse as the normal impulse

jdynamic=μd∣jnormal∣e

Collision Handling

 For particles and cloth, the following
approach works effectively:

1. Compute forces (springs, aero…)
2. Integrate motion (Euler step)
3. Test if particles hit anything

3.1 Compute & apply impulse (adjust velocity)
3.2 Adjust position

Position Adjustment

 Moving the particle to a legal position isn’t
always easy

 There are different possibilities:
 Move it to a position just before the collision
 Put it at the collision point
 Put it at the collision point plus some offset along the

normal
 Compute where it would have gone if it bounced

 Computing the bounced position is really the
best, but may involve more computation and in
order to do it right, it may require further collision
testing…

Position Adjustment

•
•

•

•••a
b

Bouncing

 Computing the bounced position is the best approach, as
it is consistent with the rest of the physics model

 We need to determine when exactly the collision
happened (we can just assume that the particle traveled
at a constant velocity within the frame)

 We then compute the impulse and adjust the velocity
 Then, we move the particle forward by the amount of

time remaining within the frame
 Ideally, we should then check collisions on this new path
 A particle getting stuck in a narrow crack might bounce

several times, so we should put a cap on the maximum
number of bounces allowed, then just stop the particle at
some point if it exceeds the limit

	Collision Detection
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Collision Detection & Response
	Slide 9
	Intersection Testing
	Primitives
	Particle Collisions
	Segment vs. Triangle
	Slide 14
	Faster Way
	Segment vs. Mesh
	Segment vs. Moving Mesh
	Slide 18
	Triangle vs. Triangle
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Mesh vs. Mesh
	Moving Mesh vs. Moving Mesh
	Moving Meshes: Extrusion
	Intersection Issues
	Collision Optimization
	Slide 30
	Optimization Structures
	Slide 32
	Bounding Volume Hierarchies
	OBB Trees
	K-Dops
	Slide 36
	Uniform Grids
	Octrees
	KD Trees
	BSP Trees
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Testing BVH’s
	Slide 46
	Pair Reduction
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Collision Response
	Impact vs. Contact
	Slide 54
	Impacts
	Impulse
	Compression & Restitution
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Friction
	Slide 63
	Collision Handling
	Position Adjustment
	Slide 66
	Bouncing

