
  

Particle Systems

© Steve Rotenberg, UCSD



  



  

Particle Systems

 Particle systems have been used extensively in 
computer animation and special effects since 
their introduction to the industry in the early 
1980’s

 The rules governing the behavior of an individual 
particle can be relatively simple, and the 
complexity comes from having lots of particles

 Usually, particles will follow some combination of 
physical and non-physical rules, depending on 
the exact situation



  



  

Cloth Simulation

• •

•••

•
• •

• Particle

Spring-damper



  

Physics



  

Kinematics of Particles

r=r ( t )

v=
dr
dt

a=dv
dt

=
d 2r

dt 2

 We will define an individual particle’s 3D position 
over time as r(t)

 By definition, the velocity is the first derivative of 
position, and acceleration is the second



  

Uniform Acceleration

a=a0

v=∫0

t
adt=v0+a0 t

r=∫ v dt=r 0+ v0 t+
1
2
a0 t

2

 How does a particle move when subjected 
to a constant acceleration?



  

Uniform Acceleration

 This shows us that the particle’s motion will follow a 
parabola

 Keep in mind, that this is a 3D vector equation (a 
parabolic equation in each dimension). Together, they 
form a 2D parabola oriented in 3D space

 We also see that we need two additional vectors r0 and 
v0 in order to fully specify the equation. These represent 
the initial position and velocity at time t=0

r=r0+v0 t+
1
2
a0 t

2



  

Mass and Momentum

p=mv

 We can associate a mass m with each particle. 
We will assume that the mass is constant

 We will also define a vector quantity called 
momentum (p), which is the product of mass 
and velocity

m=m0

Newton’s First Law: momentum 
preservation



  

Force

f =
d (mv )
dt

=
dm
dt
v+m

dv
dt

=m
dv
dt

f =ma

 Force is defined as the rate of change of 
momentum

 We can expand this out:

f = dp
dt

Newton’s Second Law  relates the kinematic quantity 
of acceleration to the physical 
quantity of force



  

Newton’s Third Law

 Newton’s Third Law says that any force that body A 
applies to body B will be met by an equal and opposite 
force from B to A

 Put another way: every action has an equal and opposite 
reaction

 This is very important when combined with the second 
law, as the two together imply the conservation of 
momentum

f AB=− f BA



  

Forces on a Particle

f total=∑ f i

 Usually, a particle will be subjected to 
several simultaneous vector forces from 
different sources

 All of these forces simply add up to a 
single total force acting on the particle



  

Particle Simulation

 Basic kinematics allows us to relate a particle’s 
acceleration to it’s resulting motion

 Newton’s laws allow us to relate acceleration to 
force

 This gives us a general scheme for simulating 
particles (and more complex things):



  

Particle Simulation

 Basic kinematics allows us to relate a particle’s 
acceleration to it’s resulting motion

 Newton’s laws allow us to relate acceleration to 
force

 This gives us a general scheme for simulating 
particles (and more complex things):

1. Compute all forces acting within the system in the 
current configuration (making sure to obey Newton’s 
third law)

2. Compute the resulting acceleration for each particle 
(a=f/m) and integrate over some small time step to get 
new positions



  

Particle Example

class Particle {
float Mass; // Constant
Vector3 Position; // Evolves frame to frame
Vector3 Velocity; // Evolves frame to frame
Vector3 Force; // Reset and re-computed each frame

public:
void Update(float deltaTime);
void Draw();
void ApplyForce(Vector3 &f) {Force.Add(f);}

};



  

Particle Example

class ParticleSystem {

int NumParticles;

Particle *P;

public:

void Update(deltaTime);

void Draw();

};



  

Particle Example

ParticleSystem::Update(float deltaTime) {
// Compute forces
Vector3 gravity(0,-9.8,0);
for(i=0;i<NumParticles;i++) {

Vector3 force=gravity*Particle[i].Mass; // f=mg
Particle[i].ApplyForce(force);

}

// Integrate
for(i=0;i<NumParticles;i++)

Particle[i].Update(deltaTime);
}



  

Particle Example

Particle::Update(float deltaTime) {
// Compute acceleration (Newton’s second law)
Vector3 Accel=(1.0/Mass) * Force;

// Compute new position & velocity
Velocity+=Accel*deltaTime;
Position+=Velocity*deltaTime;

// Zero out Force vector
Force.Zero();

} ‘forward Euler integration’



  

Particle Example

 With this particle system, each particle keeps 
track of the total force being applied to it

 This value can accumulate from various 
sources, both internal and external to the 
particle system

 The example just used a simple gravity force, 
but it could easily be extended to have all kinds 
of other possible forces

 The integration scheme used is called ‘forward 
Euler integration’ and is about the simplest 
method possible



  

Forces



  

Uniform Gravity

 A very simple, useful force is the uniform gravity field:

 It assumes that we are near the surface of a planet with 
a huge enough mass that we can treat it as infinite

 As we don’t apply any equal and opposite forces to 
anything, it appears that we are breaking Newton’s third 
law, however we can assume that we are exchanging 
forces with the infinite mass, but having no relevant 
affect on it

f gravity=mg0

g0= [ 0 −9 .8 0 ]
m

s2



  

Gravity

f gravity=
Gm1m2

d 2 e

G=6 .673×10−11 m3

kg⋅s2

 If we are far away enough from the objects such 
that the inverse square law of gravity is 
noticeable, we can use Newton’s Law of 
Gravitation:

e=
r1−r 2

∣r1−r 2∣



  

Springs

 A simple spring force can be described as:

 Where k is a ‘spring constant’ describing 
the stiffness of the spring and x is a vector 
describing the displacement

f spring=−k s x x=r1−r2



  

Springs

 In practice, it’s nice to define a spring as 
connecting two particles and having some rest 
length l where the force is 0

 This gives us:

x= xe
x=∣r1−r2∣−l    (scalar displacement )

e=
r1−r2

∣r 1−r 2∣
       (direction of displacement )



  

Springs

 As springs apply equal and opposite forces to two 
particles, they should obey conservation of momentum

 It will not, however guarantee the conservation of 
energy, and in practice, we might see a gradual increase 
or decrease in system energy over time

 A gradual decrease of energy implies that the system 
damps out and might eventually come to rest. A gradual 
increase, however, is not so nice… (more on this later)



  

Dampers

 We can also use damping forces between particles:

 Dampers will oppose any difference in velocity between 
particles

 The damping forces are equal and opposite, so they 
conserve momentum, but they will remove energy from 
the system

 The kinetic energy is effectively lost.

f damp=−k d v



  

Dampers

 Dampers operate in very much the same way as 
springs, and in fact, they are usually combined into a 
single spring-damper object

 A simple spring-damper might look like:

class SpringDamper {
float SpringConstant,DampingFactor;
float RestLength;
Particle *P1,*P2;

public:
void ComputeForce();

};



  

Dampers

 To compute the damping force, we need to 
know the closing velocity of the two particles, or 
the speed at which they are approaching each 
other

 This gives us the instantaneous closing velocity 
of the two particles

e=
r1−r2

∣r 1−r 2∣

v=v1⋅e−v2⋅e



  

Force Fields

f field∝ f (r )

 We can also define any arbitrary force field that we want. 
For example, we might choose a force field where the 
force is some function of the position within the field

 We can also do things like defining the velocity of the air 
by some similar field equation and then using the 
aerodynamic drag force to compute a final force

 Using this approach, one can define useful turbulence 
fields, winds, vortices, and other flow patterns



  

Aerodynamic Drag

 Aerodynamic interactions are actually very complex and 
difficult to model accurately

 A reasonable simplification it to describe the total 
aerodynamic drag force on an object using:

 Where ρ is the density of the air (or water…), cd is the 
coefficient of drag for the object, a is the cross sectional 
area of the object, and e is a unit vector in the opposite 
direction of the velocity

f aero=
1
2
ρ∣v∣2cd ae e=−

v
∣v∣



  

Aerodynamic Drag

 Like gravity, the aerodynamic drag force 
appears to violate Newton’s Third Law, as we 
are applying a force to a particle but no equal 
and opposite force to anything else

 We can justify this by saying that the particle is 
actually applying a force onto the surrounding 
air, but we will assume that the resulting motion 
is just damped out by the viscosity of the air



  

Integration



  

Integration

 Computing positions and velocities from accelerations is 
just integration

 If the accelerations are defined by very simple equations 
(like the uniform acceleration we looked at earlier), then 
we can compute an analytical integral and evaluate the 
exact position at any value of t

 In practice, the forces will be complex and impossible to 
integrate analytically, which is why we automatically 
resort to a numerical scheme in practice

 The Particle::Update() function described earlier 
computes one iteration of the numerical integration. In 
particular, it uses the ‘forward Euler’ scheme



  

Forward Euler Integration

 Forward Euler integration is about the simplest 
possible way to do numerical integration

 It works by treating the linear slope of the 
derivative at a particular value as an 
approximation to the function at some nearby 
value

xn +1= xn+ xn
' Δt



  

Forward Euler Integration

 For particles, we are actually integrating twice to 
get the position

which expands to

vn+1=vn+an Δt
rn +1=rn+vn +1 Δt

rn+1=rn+(vn+an Δt )Δt

      =r n+ vn Δt+an ( Δt )2



  

Forward Euler Integration

 Note that this:

is very similar to the result we would get if we 
just assumed that the particle is under a uniform 
acceleration for the duration of one frame:

rn+1=rn+vn Δt+an ( Δt )2

rn +1=rn+vn Δt+
1
2
an ( Δt )2



  

Forward Euler Integration

 The forward Euler method is very simple to 
implement and if it provides adequate results, 
then it can be very useful

 It will be good enough for lots of particle systems 
used in computer animation, but it’s accuracy is 
not really good enough for ‘engineering’ 
applications

 It may also behave very poorly in situations 
where forces change rapidly, as the linear 
approximation to the acceleration is no longer 
valid in those circumstances



  

Forward Euler Integration

 One area where the forward Euler method fails is when 
one has very tight springs

 A small motion will result in a large force
 Attempting to integrate this using large time steps may 

result in the system diverging (or ‘blowing up’)
 Therefore, we must use lots of smaller time steps in 

order for our linear approximation to be accurate enough
 This resorting to many small time steps is where the 

computationally simple Euler integration can actually be 
slower than a more complex integration scheme that 
costs more per iteration but requires fewer iterations

 We will look at more sophisticated integration schemes 
in future lectures



  

Cloth Simulation

1. Compute Forces

For each particle: Apply gravity

For each spring-damper: Compute & apply forces

For each triangle: Compute & apply aerodynamic forces

2. Integrate Motion

For each particle: Apply forward Euler integration

• •

•••

•
• •



  

Bending Forces

 If we arrange our cloth springs 
as they are in the picture, there 
will be nothing preventing the 
cloth from bending

• • •

•••

•
• •

• •

•••

•
• •



  

Bending Forces

 If we arrange our cloth springs 
as they are in the picture, there 
will be nothing preventing the 
cloth from bending

 A simple solution is to add more 
springs, arranged in various 
configurations, such as the one 
in the picture

 The spring constants of this 
layer might need to be tuned 
differently…

• • •

•••

•
• •

• •

•••

•
• •



  

Cloth Simulation

1. Compute Forces

For each particle: Apply gravity

For each spring-damper: Compute & apply forces

For each triangle: Compute & apply aerodynamic forces

2. Integrate Motion

For each particle: Apply forward Euler integration

• •

•••

•
• •



  

Ropes & Solids

 We can use this exact same scheme to 
simulate ropes, solids, and similar objects

•

•

• •
••

• •
•

•

•
•

•



  

Collision Detection & Response

 Cloth colliding with rigid 
objects is tricky

 Cloth colliding with itself is 
even trickier

 There have been several 
published papers on robust 
cloth collision detection and 
response methods



  

Collisions

 Here’s a very basic way to collide with a y=y0 
plane

If(r.y < y0) {

r.y= y0 - r.y;

v.y= - elasticity * v.y;
v.x= (1-friction) * v.x; // cheezy
v.z= (1-friction) * v.z; // cheezy

}



  

Demo videos



  

Particle Systems



  

Particle Systems

 In computer animation, particle systems can be 
used for a wide variety of purposes, and so the 
rules governing their behavior may vary

 A good understanding of physics is a great place 
to start, but we shouldn’t always limit ourselves 
to following them strictly

 In addition to the physics of particle motion, 
several other issues should be considered when 
one uses particle systems in computer 
animation



  

Particles

 In physics, a basic particle is defined by 
it’s position, velocity, and mass

 In computer animation, we may want to 
add various other properties:
 Color
 Size
 Life span
 Anything else we want…



  

Creation & Destruction

 The example system we showed at the 
beginning had a fixed number of particles

 In practice, we want to be able to create and 
destroy particles on the fly

 Often times, we have a particle system that 
generates new particles at some rate

 The new particles are given initial properties 
according to some creation rule

 Particles then exist for a finite length of time until 
they are destroyed (based on some other rule)



  

Randomness

 An important part of making particle 
systems look good is the use of 
randomness

 Giving particle properties a good initial 
random distribution can be very effective

 Properties can be initialized using uniform 
distributions, Gaussian distributions, or 
any other function desired



  

Particle Rendering

 Particles can be rendered using various 
techniques
 Points
 Lines (from last position to current position)
 Sprites (textured quad’s facing the camera)
 Geometry (small objects…)
 Or other approaches…

 For the particle physics, we are assuming that a 
particle has position but no orientation. 
However, for rendering purposes, we could keep 
track of a simple orientation and even add some 
rotating motion, etc…



  



  



  

Appendix



  

Collisions & Impulse

 A collision is assumed to be instantaneous
 However, for a force to change an object’s 

momentum, it must operate over some time 
interval

 Therefore, sometimes we can’t use actual forces 
to do collisions

 Instead, we introduce the concept of an impulse, 
which can be though of as a large force acting 
over a small time



  

Impulse

 An impulse can be thought of as the integral of a force 
over some time range, which results in a finite change in 
momentum:

 An impulse behaves a lot like a force, except instead of 
affecting an object’s acceleration, it directly affects the 
velocity

 Impulses also obey Newton’s Third Law, and so objects 
can exchange equal and opposite impulses

 Also, like forces, we can compute a total impulse as the 
sum of several individual impulses

j=∫ f dt= Δp



  

Impulse

 The addition of impulses makes a slight modification to 
our particle simulation:

// Compute all forces and impulses
f =∑ f i
j=∑ j i
// Integrate to get new velocity & position

v '=v0+
1
m

( fΔt + j )

r '=r0+v
' Δt



  

Collisions

 Today, we will just consider the simple 
case of a particle colliding with a static 
object

 The particle has a velocity of v before the 
collision and collides with the surface with 
a unit normal n

 We want to find the collision impulse j 
applied to the particle during the collision



  

Elasticity

 There are a lot of physical theories behind 
collisions

 We will stick to some simplifications
 We will define a quantity called elasticity that will 

range from 0 to 1, that describes the energy 
restored in the collision

 An elasticity of 0 indicates that the closing 
velocity after the collision is 0

 An elasticity of 1 indicates that the closing 
velocity after the collision is the exact opposite 
of the closing velocity before the collision



  

Collisions

 Let’s first consider a collision with no friction
 The collision impulse will be perpendicular to the 

collision plane (i.e., along the normal)

 That’s actually enough for collisions today. We 
will spend a whole lecture on them next week.

v close=v⋅n

j=−(1+e )mv close n



  

Combining Forces

 All of the forces we’ve examined can be 
combined by simply adding their contributions

 Remember that the total force on a particle is 
just the sum of all of the individual forces

 Each frame, we compute all of the forces in the 
system at the current instant, based on 
instantaneous information (or numerical 
approximations if necessary)

 We then integrate things forward by some finite 
time step



  

Creation Rules

 It’s convenient to have a ‘CreationRule’ as an 
explicit class that contains information about 
how new particles are initialized

 This way, different creation rules can be used 
within the same particle system

 The creation rule would normally contain 
information about initial positions, velocities, 
colors, sizes, etc., and the variance on those 
properties

 A simple way to do creation rules is to store two 
particles: mean & variance (or min & max)



  

Creation Rules

 In addition to mean and variance properties, 
there may be a need to specify some geometry 
about the particle source

 For example, we could create particles at 
various points (defined by an array of points), or 
along lines, or even off of triangles

 One useful effect is to create particles at a 
random location on a triangle and give them an 
initial velocity in the direction of the normal. With 
this technique, we can emit particles off of 
geometric objects



  

Destruction

 Particles can be destroyed according to various rules
 A simple rule is to assign a limited life span to each 

particle (usually, the life span is assigned when the 
particle is created)

 Each frame, it’s life span decreases until it gets to 0, 
then the particle is destroyed

 One can add any other rules as well
 Sometimes, we can create new particles where an old 

one is destroyed. The new particles can start with the 
position & velocity of the old one, but then can add some 
variance to the velocity. This is useful for doing fireworks 
effects…


	Particle Systems
	Slide 2
	Slide 3
	Slide 4
	Physics
	Kinematics of Particles
	Uniform Acceleration
	Slide 9
	Mass and Momentum
	Force
	Newton’s Third Law
	Forces on a Particle
	Particle Simulation
	Slide 15
	Particle Example
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Forces
	Uniform Gravity
	Gravity
	Springs
	Slide 25
	Slide 26
	Dampers
	Slide 28
	Slide 29
	Force Fields
	Aerodynamic Drag
	Slide 32
	Integration
	Slide 34
	Forward Euler Integration
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Collision Detection & Response
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Particles
	Creation & Destruction
	Randomness
	Particle Rendering
	Slide 54
	Slide 55
	Slide 56
	Collisions & Impulse
	Impulse
	Slide 59
	Collisions
	Elasticity
	Slide 62
	Combining Forces
	Creation Rules
	Slide 65
	Destruction

