
Rigid Body Dynamics



From Particles to Rigid Bodies

• Particles

– No rotations

– Linear velocity v only

• Rigid bodies

– Body rotations

– Linear velocity v

– Angular velocity ω



Rigid Bodies

Rigid bodies have both a position and orientation

Rigid bodies assume no object deformation 

Rigid body motion is represented by 2 parameters 

)(tx - center of mass

)(tR - orientation (rotation matrix)

Meaning of R(t): columns represent the coordinates 

of the body space base vectors (1,0,0), (0,1,0), (0,0,1) 

in world space.



Rigid Bodies

Objects are defined in body space (local coordinate 
system) and transformed into world space
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Body Space 

Objects are defined in body space (local coordinate 
system) and transformed into world space

– bodies are specified relative to this 
system

– center of mass is the origin 

(for convenience)

• We will specify body-related physical 
properties (inertia, …) in this frame



Outline

• Rigid Body Preliminaries
– velocity, acceleration, and inertia

• State and Evolution

• Collision Detection and Contact 
Determination

• Colliding Contact Response



Kinematics: Velocities

• How do x(t) and R(t) change over time?

• Linear velocity v(t) = dx(t)/dt is the same:

– Describes the velocity of the center of mass (m/s)

• Angular velocity (t) is new!

– Direction is the axis of rotation

– Magnitude is the angular
velocity about the axis 
(rad/s)

– There is a simple 
relationship between 
R(t) and (t)



Kinematics: Velocities

Then



We can represent the cross product with a matrix

Angular Velocity
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Since a point can be represented at any time by

Velocity of a Point

Total velocity can then be expressed as
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Which can be rewritten as



Dynamics: Accelerations

• How do v(t) and dR(t)/dt change over time?

• First we need some more machinery

– Forces and Torques

– Momentums

– Inertia Tensor

• Simplify equations by formulating accelerations 
in terms of momentum derivatives instead of 
velocity derivatives



We can apply forces to the object at any point

Force

 )()( tt iFF

Total force on an object is simply

No information about where the forces are applied

)(1 tF
)(2 tF



Torque describes the “rotational force”

Torque

  )())()(()()( ttttt iii Fxrττ

Total torque on an object is simply

Tells us about the force distribution over the 
object
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Forces and Torques

• External forces Fi(t) act on particles
– Total external force F= Fi(t)

• Torques depend on distance from the center 
of mass:

i (t) = (ri(t) – x(t)) x Fi(t)

– Total external torque 
 =  ((ri(t)-x(t)) x Fi(t)

• F(t) doesn’t convey any information about 
where the various forces act

• (t) does tell us about the distribution of 
forces



Linear momentum of a particle is

Linear Momentum

Linear momentum of a rigid body is then
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density

integration over the body



Linear momentum can be simplified as follows

Linear Momentum
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Assuming constant mass gives
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Just as if body were a particle with 

mass M and velocity v(t)



Linear momentum can be simplified as follows

Linear Momentum
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This term 
vanishes 
because of the 
definition of 
COM



Angular momentum of a rigid body

Angular Momentum

)()()( ttt ωIL 

Taking the time derivative
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inertia tensor

Angular momentum is conserved when there is no 
torque



Describes how mass is distributed in the body

Inertia Tensor
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Measures the preferred axis of rotation
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Rewrite the tensor as

Inertia Tensor
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Integrals can now be precomputed
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Outline

• Rigid Body Preliminaries

• State and Evolution

– Variables and derivatives

• Quaternions

• Collision Detection and Contact 
Determination

• Colliding Contact Response



New State Space

v(t) replaced by linear momentum P(t)

(t) replaced by angular momentum L(t)

Size of the vector: (3+9+3+3)N = 18N

Spatial information

Velocity information



Taking the Derivative

Conservation of momentum (P(t), L(t)) lets us express 
the accelerations in terms of forces and torques.

Discretize these continuous equations and integrate



Simulate: next state computation

• From X(t) certain quantities are computed
I-1(t) = R(t) Ibody

-1 RT(t) 
v(t) = P(t) / M
ω(t) = I-1(t) L(t)

• We must be content with a finite number of discrete 
time points

• Use your favorite ODE solver to solve for the new state 
X(t), given previous state X(t-t) and applied forces F(t) 
and (t)

X(t) = Solver::Step(X(t- t), F(t),  (t))



Simple simulation algorithm

X = InitializeState()

For t=t0 to tfinal with step  t

ClearForces(F(t), (t))

AddExternalForces(F(t), (t))

Xnew =Solver::Step(X, F(t), (t))

X =Xnew

t = t + t

End for



Outline

• Rigid Body Preliminaries

• State and Evolution

• Collision Detection and Contact 
Determination
– Contact classification

– Intersection testing, bisection, and nearest 
features

• Colliding Contact Response
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What should we do when there is a collision?

Collisions and Contact
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Restart the simulation at the time of the collision

Rolling Back the Simulation

Collision time can be found by bisection, etc.
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Exploit coherency through witnessing

Collision Detection

Speed up with bounding boxes, grids, hierarchies, etc.

separating plane

Two convex objects are 
non-penetrating iff there exists a
separating plane between them

First find a separating plane and
see if it is still valid after the 

next
simulation step



Conditions for collision

Collision Detection
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separating contact colliding



Soft Body Collision

Collision

Force is applied to prevent interpenetration



Soft Body Collision

Collision

Apply forces and change the velocity



Harder Collision

Collision

Higher force over a shorter time



Rigid Body Collision

Collision

Impulsive force produces a discontinuous velocity



We need to change velocity instantaneously

Impulse

Infinite force in an infinitesimal time
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An impulse changes the velocity as

or



An impulse also creates an impulsive torque

Impulse

The impulsive torque changes the angular velocity
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For a frictionless collision

Impulse

But how do we calculate    ?
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For a frictionless collision

Impulse

Given this equation and knowing how    affects the
linear and angular velocities of the two bodies,
we can solve for 
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Bodies are neither colliding nor separating

Resting Contact

We want a force strong enough to resist
penetration but only enough to maintain contact 



We want to prevent interpenetration

Resting Contact
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Describes the objects’ acceleration towards one another



Contact forces only act in the normal direction

Resting Contact

Contact forces should

)( cc tf NF 

0)( ctd
 avoid interpenetration

0f
 be repulsive

0)(  ctdf  workless force

 become zero if the bodies begin to separate



The relative accelerations can be written in terms
of all of the contact forces

Resting Contact
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So we can simply solve a Quadratic Program to
find the solution to all the constraints



Algorithm with collisions and contact

Simulation Algorithm

compute new state

detect collisions and backtrack

compute and apply impulses

compute and apply constraint forces

current state

next state

collision state

post-collision state


