
© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1

2D Spline Curves

CS 4620 Lecture 13

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2

Motivation: smoothness

• In many applications we need smooth shapes
– that is, without discontinuities

• So far we can make
– things with corners (lines, squares, rectangles, …)
– circles and ellipses (only get you so far!)

[B
o
e
in

g
]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3

Classical approach

• Pencil-and-paper draftsmen also needed
smooth curves

• Origin of “spline:” strip of flexible metal
– held in place by pegs or weights to constrain shape
– traced to produce smooth contour

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4

Translating into usable math

• Smoothness
– in drafting spline, comes from physical curvature

minimization
– in CG spline, comes from choosing smooth

functions
• usually low-order polynomials

• Control
– in drafting spline, comes from fixed pegs
– in CG spline, comes from user-specified control

points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5

Defining spline curves

• At the most general they are parametric
curves

• Generally f(t) is a piecewise polynomial
– for this lecture, the discontinuities are at the

integers

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6

Defining spline curves

• Generally f(t) is a piecewise polynomial
– for this lecture, the discontinuities are at the

integers
– e.g., a cubic spline has the following form over

[k, k + 1]:

– Coefficients are different for every interval

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7

Coordinate functions

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8

Coordinate functions

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 9

Control of spline curves

• Specified by a sequence of control points
• Shape is guided by control points (aka

control polygon)
– interpolating: passes through points
– approximating: merely guided by points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
0

How splines depend on their
controls
• Each coordinate is separate

– the function x(t) is determined solely by the x
coordinates of the control points

– this means 1D, 2D, 3D, … curves are all really the
same

• Spline curves are linear functions of their
controls
– moving a control point two inches to the right moves

x(t) twice as far as moving it by one inch
– x(t), for fixed t, is a linear combination (weighted

sum) of the control points’ x coordinates
– p(t), for fixed t, is a linear combination (weighted

sum) of the control points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
1

Splines as reconstruction

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
2

Trivial example: piecewise linear

• This spline is just a polygon
– control points are the vertices

• But we can derive it anyway as an
illustration

• Each interval will be a linear function
– x(t) = at + b
– constraints are values at endpoints

– b = x0 ; a = x1 – x0

– this is linear interpolation

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
3

Trivial example: piecewise linear

• Vector formulation

• Matrix formulation

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
4

Trivial example: piecewise linear

• Basis function formulation
– regroup expression by p rather than t

– interpretation in matrix viewpoint

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
5

Trivial example: piecewise linear

• Basis function formulation
– regroup expression by p rather than t

– interpretation in matrix viewpoint [p0p1]=[x0 y0

x1 y1
]p(t)=[x (t) y (t)]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
6

Trivial example: piecewise linear

• Vector blending formulation: “average of
points”
– blending functions: contribution of each point as

t changes

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
7

Trivial example: piecewise linear

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together

– this is just like a reconstruction filter!

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
8

Seeing the basis functions

• Basis functions of a spline are revealed by
how the curve changes in response to a
change in one control
– to get a graph of the basis function, start with

the curve laid out in a straight, constant-speed
line
• what are x(t) and y(t)?

– then move one control straight up

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Piece these together

Create series of equations

p1

p2

p0

p3

p4
p1

p2

p3

p4

(x , y)={
0≤t<1,(1−t) p0+tp1

1≤t<2,(2− t) p1+(t−1) p2

2≤ t<3,(3−t) p2+(t−2) p3

3≤ t<4,(4−t) p3+(t−3) p4

4≤t<5,(5−t) p4+(t−4) p5

}

p0

Blending Functions

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
0

Hermite splines

• Less trivial example
• Form of curve: piecewise cubic
• Constraints: endpoints and tangents

(derivatives)

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
1

Hermite splines

• Solve constraints to find coefficients

[
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

][
a
b
c
d
]=[

x0

x1

x ' 0
x ' 1

]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
2

Hermite splines

• Solve constraints
to find coefficients

[
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

][
a
b
c
d
]=[

x0

x1

x ' 0
x ' 1

]

[
a
b
c
d
]=[

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

][
x0

x1

x ' 0
x ' 1

]
calculate A−1

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
3

Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns

• note p columns sum to [0 0 0 1]T

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
4

Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns

• note p columns sum to [0 0 0 1]T

[
p0
p1
v0
v1

]=[
x0 y0

x1 y1

x ' 0 y ' 0
x ' 1 y ' 1

]

A−1

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
5

Coefficients = rows

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
6

Basis functions=columns

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
7

Hermite splines

• Hermite blending functions

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
8

Longer Hermite splines

• Can only do so much with one Hermite
spline

• Can use these splines as segments of a
longer curve
– curve from t = 0 to t = 1 defined by first

segment
– curve from t = 1 to t = 2 defined by second

segment

• To avoid discontinuity, match derivatives at
junctions
– this produces a C1 curve

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 2
9

Hermite splines

• Hermite basis functions

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
0

Continuity

• Smoothness can be described by degree of
continuity
– zero-order (C0): position matches from both sides
– first-order (C1): tangent matches from both sides
– second-order (C2): curvature matches from both sides
– Gn vs. Cn

zero order first order second order

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
1

Continuity

• Parametric continuity (C) of spline is
continuity of coordinate functions

• Geometric continuity (G) is continuity of the
curve itself

• Neither form of continuity is guaranteed by
the other
– Can be C1 but not G1 when p(t) comes to a halt

(next slide)
– Can be G1 but not C1 when the tangent vector

changes length abruptly

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
2

Geometric vs. parametric
continuity

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
3

Control

• Local control
– changing control point only affects a limited part

of spline
– without this, splines are very difficult to use
– many likely formulations lack this

• natural spline
• polynomial fits

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
4

Control

• Convex hull property
– convex hull = smallest convex region containing

points
• think of a rubber band around some pins

– some splines stay inside convex hull of control
points
• make clipping, culling, picking, etc. simpler

YES YES YES NO

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
5

Affine invariance

• Transforming the control points is the same
as transforming the curve
– true for all commonly used splines
– extremely convenient in practice…

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
6

Hermite splines

• Constraints are endpoints
 and endpoint tangents

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
7

Hermite basis

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
8

Affine invariance

• Basis functions associated with points
should always sum to 1

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
9

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
0

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
1

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
2

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
3

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

– note derivative is defined as 3 times
offset t
• reason is illustrated by linear case

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
4

Hermite to
Bézier

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
5

Hermite to
Bézier

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
6

Hermite to
Bézier

Hermite matrix

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
7

Hermite to
Bézier

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
8

Bézier matrix

– note that these are the Bernstein polynomials

C(n,k) tk (1 – t)n – k

and that defines Bézier curves for any degree

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
9

Apply Constraint Matrix

[1 u u2 u3][
1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1
] [

p0

p1

p2

p3
]

[(1−u)3 3u (u−1)2 3u2 (u−1) u3] [
p0

p1

p2

p3
]

(1−u)
3 p0+3 u(1−u)

2 p1+3u2
(1−u) p2+u3 p3

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
0

Bézier basis

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Bezier Polynomials sum to one

€

(1−u)+u =1
((1−u)+u) =1

((1−u)+u)3 =1

(1−u)3 + 3u(1−u)2 + 3u2 (1−u)+u3 =1

So each point on the curve is a convex sum of the control points

Thus the curve lies inside the convex hull of the control points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
2

Convex hull

• If basis functions are all positive, the spline
has the convex hull property
– we’re still requiring them to sum to 1

– if any basis function is ever negative, no convex
hull prop.
• proof: take the other three points at the same

place

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18
53

Convex Hull

Check that the curve remains inside the
convex hull of the control points in our
examples

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
4

Chaining spline segments

• Hermite curves are convenient because
they can be made long easily

• Bézier curves are convenient because their
controls are all points and they have nice
properties
– and they interpolate every 4th point, which is a

little odd

• We derived Bézier from Hermite by defining
tangents from control points
– a similar construction leads to the interpolating

Catmull-Rom spline

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
5

Chaining Bézier splines

• No continuity built in
• Achieve C1 using collinear control points

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
6

Subdivision

• A Bézier spline segment can be split into a
two-segment curve:

– de Casteljau’s algorithm
– also works for arbitrary t

[F
v
D

F
H

]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
7

Cubic Bézier splines

• Very widely used type, especially in 2D
– e.g. it is a primitive in PostScript/PDF

• Can represent C1 and/or G1 curves with
corners

• Can easily add points at any position
• Illustrator demo

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
8

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 5
9

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6
0

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6
1

• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6
2

Hermite to Catmull-Rom

• Tangents are (pk + 1 – pk – 1) / 2
– scaling based on same argument about collinear

case

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6
3

Catmull-Rom basis

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6
4

Catmull-Rom basis

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6
5

Catmull-Rom splines

• Our first example of an interpolating spline
• Like Bézier, equivalent to Hermite

– in fact, all splines of this form are equivalent

• First example of a spline based on just a
control point sequence

• Does not have convex hull property

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

B-Spline

• We may want more
continuity than C1

• We may not need an
interpolating spline

• B-splines are a clean,
flexible way of making
long splines with arbitrary
order of continuity

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Why B-spline.
1. High-order bezier curve
instead?

• Recall bezier curve
– The degree of a Bezier

Curve is determined by the
number of control points

– E. g. bezier curve degree 11
– difficult to bend the "neck"
toward the line segment
P4P5.

– We can add more control
points, BUT this will increase
the degree of the curve 
increase computational
burden and smoothness

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

• Joint many bezier curves of
lower degree together (right
figure)
– You can chain Hermite or

Bezier curves
– Catmull-Rom spline is also

in this form
– Unintuitive to control and

sometimes not smooth
enough

Why B-Spline.
2. Chaining cubic Bezier curves
instead?

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 6
9

B-splines

• Use 4 points, but approximate only middle
two

• Draw curve with overlapping segments
– 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc

• Curve may miss all control points
• Smoother at joint points (why? - later)

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
0

Cubic B-spline basis

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
1

Cubic B-spline basis

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
2

Deriving the B-Spline

• Want a cubic spline; therefore 4 active
control points

• Want C2 continuity
– Turns out that is enough to determine everything

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
3

Efficient construction of any B-
spline
• B-splines defined for all orders

– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
4

B-spline construction, alternate
view
• Recurrence

– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
5

B-spline of order 1 using b1(t)

t

x(t)

• Order =1
• Degree =0
• Discontinuous
• 1 segment basis

function

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
6

B-spline of order 2 (Linear B-
Splines)
• Order =2
• Degree =1
• C0 continuous
• 2 segments

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
7

B-spline or order 4 (cubic B-spline)

• Order =4
• Degree =3
• C2 continuous
• 4 segments

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
8

Cubic B-spline matrix

p(t) = tTMSp = b(t)Tp

b (t)=
1
6 [

(1−t)3

3 t3−6 t2+4
−3 t 3+3 t2+3 t+1

t3
]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Basis Functions

2

21

1
1

12

2

0

)1(

)(
)1(

)2(

0

)(

3

2

1

0































iu

iui

iui
iui

iui

iu

ub

ub
ub

ub

uBi

In terms of the blending polynomials

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison­Wesley 2012

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Basis Functions

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8
1

Other types of B-splines

• Nonuniform B-splines
– discontinuities not evenly spaced
– allows control over continuity or interpolation at

certain points
– e.g. interpolate endpoints (commonly used case)

• Nonuniform Rational B-splines (NURBS)
– ratios of nonuniform B-splines: x(t) / w(t); y(t) /

w(t)
– key properties:

• invariance under perspective as well as affine
• ability to represent conic sections exactly

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Non-uniform B-Spline basis
function

           2
1

1,1

1

1,

,
















iki

ki

ki

iki

ki

iki uu

uN
uu

uu

uN
uuuN

 3
selainnya. 0

 1
 1

1,



 

 ii

i

uuu
N

In equation (1.1), the denominators can have a value of
zero, 0/0 is presumed to be zero.

Otherwise

(1.1)

(1.2)

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Type of B-Spline knot vector
(the set of parameters t)

Non­periodic knots
(open knots)

Periodic knots
(non­open knots)

-First and last knots are
duplicated k times.
-E.g (0,0,0,1,2,2,2)
-Curve pass through the
first and last control
points

-First and last knots are
not duplicated – same
contribution.
-E.g (0, 1, 2, 3)
-Curve doesn’t pass
through end points.
- can used to generate
closed curves (when first
= last control points)

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18

Type of B­Spline knot vector

Non­periodic knots
(open knots)

Periodic knots
(non­open knots)

(Closed knots)(0,0,0,1,2,2,2) (0, 1, 2, 3...)

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8
5

Converting spline
representations
• All the splines we have seen so far are

equivalent
– all represented by geometry matrices

• where S represents the type of spline
– therefore the control points may be transformed

from one type to another using matrix
multiplication

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8
6

Evaluating splines for display

• Need to generate a list of line segments to
draw
– generate efficiently
– use as few as possible
– guarantee approximation accuracy

• Approaches
– reccursive subdivision (easy to do adaptively)
– uniform sampling (easy to do efficiently)

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8
7

Evaluating by subdivision

– Recursively split spline
• stop when polygon is

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4

[F
v
D

F
H

]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8
8

Evaluating by subdivision

– Recursively split spline
• stop when polygon is

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4

[F
v
D

F
H

]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8
9

Evaluating by subdivision

– Recursively split spline
• stop when polygon is

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4

[F
v
D

F
H

]

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 9
0

Evaluating with uniform spacing

• Forward differencing
– efficiently generate points for uniformly spaced t

values
– evaluate polynomials using repeated differences

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18
91

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison­

Wesley 2012

B-Spline Patches

vupvbubvup T
SS

T
ijj

i j
i MPM 

 

)()(),(
3

0

3

0

defined over only 1/9 of region

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	B-Spline
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 80
	Slide 81
	B-Spline basis function
	Type of B-Spline uniform knot vector
	PowerPoint Presentation
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

