2D Spline Curves

CS 4620 Lecture 13

Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • $_1$

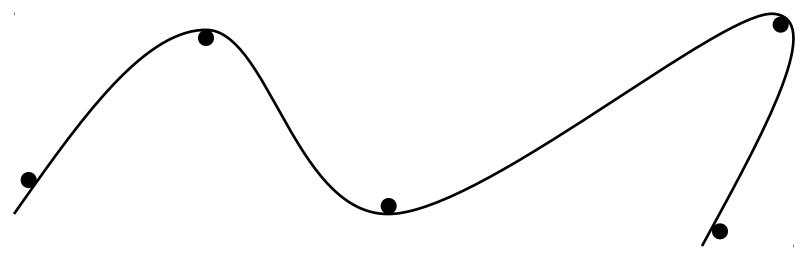
Motivation: smoothness

- In many applications we need smooth shapes
 - that is, without discontinuities

- So far we can make
 - things with corners (lines, squares, rectangles, ...)
 - circles and ellipses (only get you so far!)

Classical approach

- Pencil-and-paper draftsmen also needed smooth curves
- Origin of "spline:" strip of flexible metal
 - held in place by pegs or weights to constrain shape
 - traced to produce smooth contour



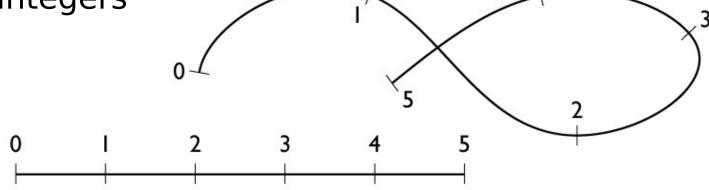
Translating into usable math

- Smoothness
 - in drafting spline, comes from physical curvature minimization
 - in CG spline, comes from choosing smooth functions
 - usually low-order polynomials
- Control
 - in drafting spline, comes from fixed pegs
 - in CG spline, comes from user-specified control points

Defining spline curves

• At the most general they are parametric curves $S = \{\mathbf{p}(t) \mid t \in [0, N]\}$

- Generally *f*(*t*) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers



Cornell CS4620 Fall 2008 • Lecture 18

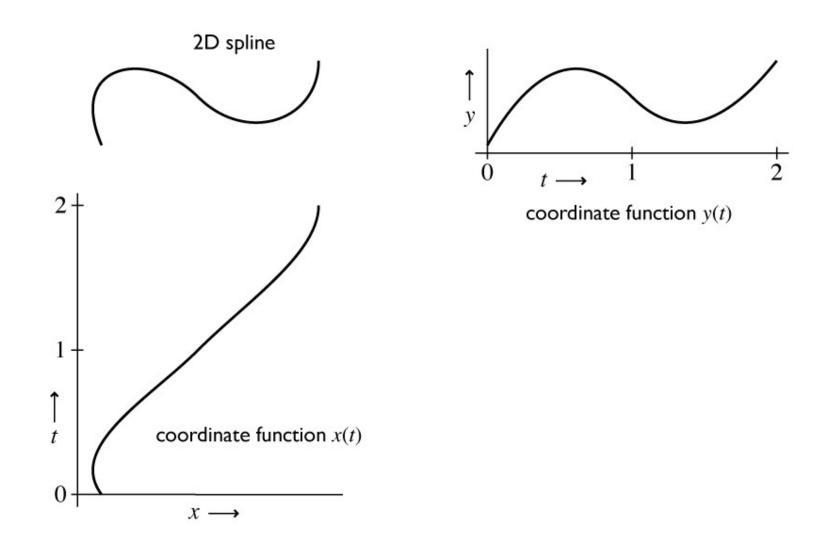
Defining spline curves

- Generally *f*(*t*) is a piecewise polynomial
 - for this lecture, the discontinuities are at the integers
 - e.g., a cubic spline has the following form over [k, k + 1]:

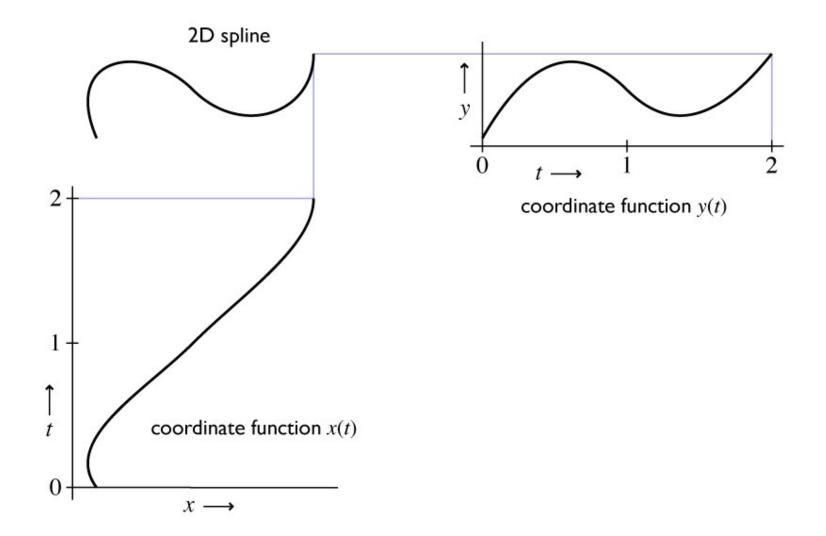
$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$
$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

- Coefficients are different for every interval

Coordinate functions



Coordinate functions

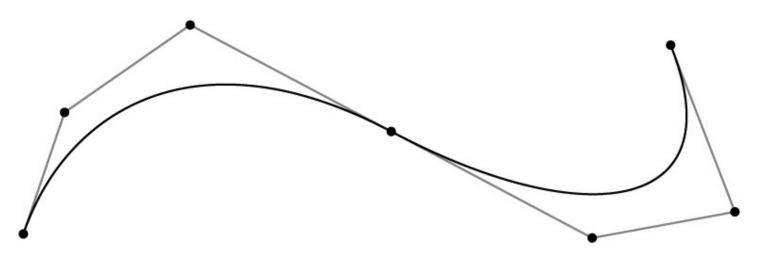


Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • 8

Control of spline curves

- Specified by a sequence of control points
- Shape is guided by control points (aka control polygon)
 - interpolating: passes through points
 - approximating: merely guided by points



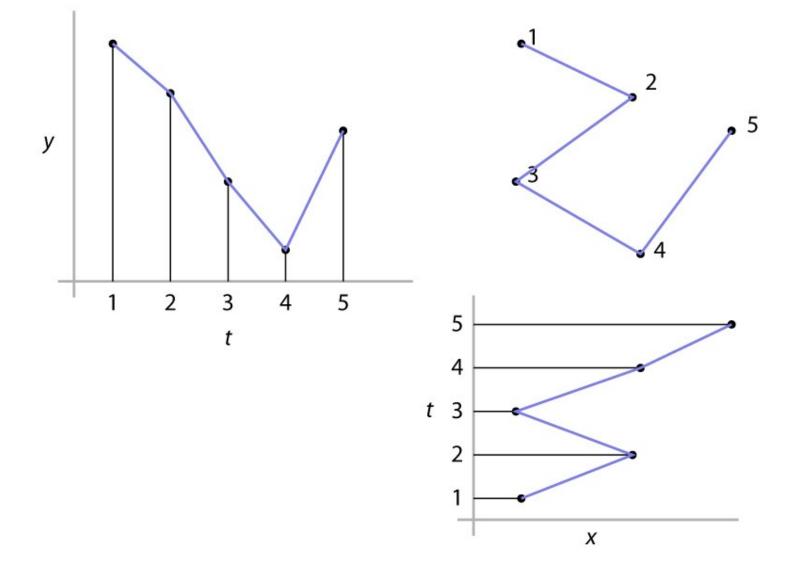
How splines depend on their controls

- Each coordinate is separate
 - the function x(t) is determined solely by the x coordinates of the control points
 - this means 1D, 2D, 3D, ... curves are all really the same
- Spline curves are **linear** functions of their controls
 - moving a control point two inches to the right moves
 x(t) twice as far as moving it by one inch
 - x(t), for fixed t, is a linear combination (weighted sum) of the control points' x coordinates
 - **p**(*t*), for fixed *t*, is a linear combination (weighted sum) of the control points

Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • $_1$

Splines as reconstruction



Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • $_1$

- This spline is just a polygon
 - control points are the vertices
- But we can derive it anyway as an illustration
- Each interval will be a linear function
 - -x(t) = at + b
 - constraints are values at endpoints
 - $-b = x_0; a = x_1 x_0$
 - this is linear interpolation

Vector formulation

$$x(t) = (x_1 - x_0)t + x_0$$
$$y(t) = (y_1 - y_0)t + y_0$$
$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$

Matrix formulation

$$\mathbf{p}(t) = \begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

3

- Basis function formulation
 - regroup expression by **p** rather than *t*

$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$
$$= (1 - t)\mathbf{p}_0 + t\mathbf{p}_1$$

- interpretation in matrix viewpoint

$$\mathbf{p}(t) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

Basis function formulation

- regroup expression by **p** rather than t

$$\mathbf{p}(t) = (\mathbf{p}_1 - \mathbf{p}_0)t + \mathbf{p}_0$$
$$= (1 - t)\mathbf{p}_0 + t\mathbf{p}_1$$
$$p(t) = \begin{bmatrix} x(t) & y(t) \end{bmatrix} \qquad \begin{bmatrix} p_0 \\ p_1 \end{bmatrix} = \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \end{bmatrix}$$
$$\mathbf{p}(t) = \left(\begin{bmatrix} t & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \right) \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \end{bmatrix}$$

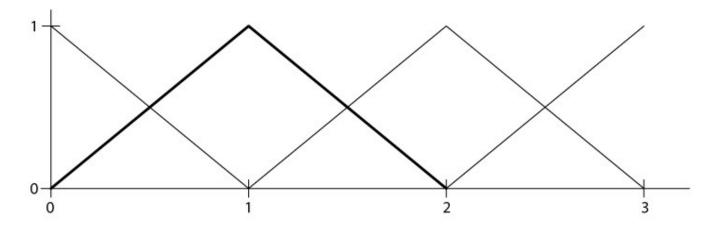
- Vector blending formulation: "average of points"
 - blending functions: contribution of each point as t changes



Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner •

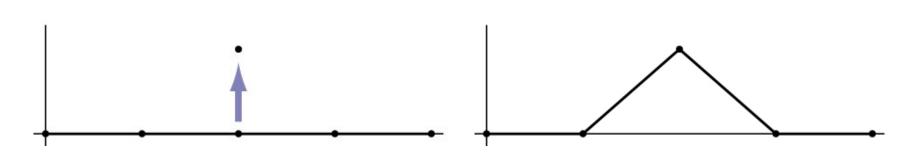
- Basis function formulation: "function times point"
 - basis functions: contribution of each point as *t* changes



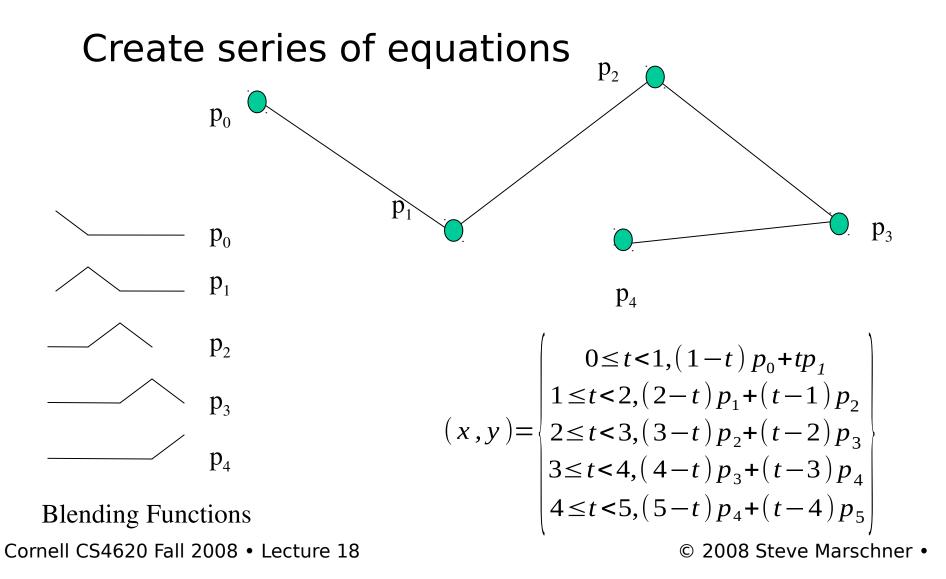
- can think of them as blending functions glued together
- this is just like a reconstruction filter!

Seeing the basis functions

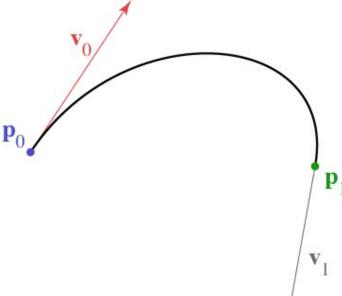
- Basis functions of a spline are revealed by how the curve changes in response to a change in one control
 - to get a graph of the basis function, start with the curve laid out in a straight, constant-speed line
 - what are x(t) and y(t)?
 - then move one control straight up



Piece these together



- Less trivial example
- Form of curve: piecewise cubic
- Constraints: endpoints and tangents (derivatives)



Solve constraints to find coefficients

$$\begin{aligned} x(t) &= at^{3} + bt^{2} + ct + d \\ x'(t) &= 3at^{2} + 2bt + c \\ x(0) &= x_{0} = d \\ x(1) &= x_{1} = a + b + c + d \\ x'(0) &= x'_{0} = c \\ x'(1) &= x'_{1} = 3a + 2b + c \\ & & & & & \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} x_{0} \\ x_{1} \\ x'_{0} \\ x'_{1} \end{bmatrix} \end{aligned}$$
Cornell CS4620 Fall 2008 · Lecture

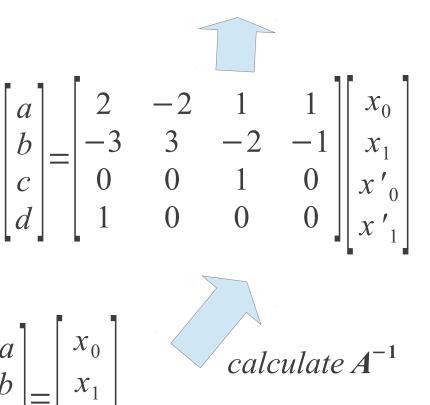
 Solve constraints to find coefficients $x(t) = at^3 + bt^2 + ct + d$ $x'(t) = 3at^2 + 2bt + c$ $x(0) = x_0 = d$ $x(1) = x_1 = a + b + c + d$ $x'(0) = x'_0 = c$ $x'(1) = x'_1 = 3a + 2b + c$ $\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \\ x'_0 \\ x'_1 \end{bmatrix}$ Cornell CS4620 Fall 2008

$$d = x_0$$

$$c = x'_0$$

$$a = 2x_0 - 2x_1 + x'_0 + x'_1$$

$$b = -3x_0 + 3x_1 - 2x'_0 - x'_1$$



2008 Steve Marschner • 2

Matrix form is much simpler

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

- coefficients = rows
- basis functions = columns
 - note **p** columns sum to [0 0 0 1]^T

Matrix form is much simpler

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

Г

- coefficients = rows
- basis functions = columns
 - note **p** columns sum to [0 0 0 1][⊤]

 4^{-1}

 $\begin{bmatrix} p_{0} \\ p_{1} \\ v_{0} \\ v_{1} \end{bmatrix} = \begin{bmatrix} x_{0} & y_{0} \\ x_{1} & y_{1} \\ x'_{0} & y'_{0} \\ x'_{1} & y'_{1} \end{bmatrix}$

Coefficients = rows

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

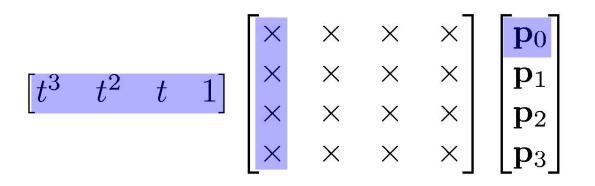
 $\mathbf{p}(t) = b_0(t)\mathbf{p}_0 + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • 2

Basis functions=columns

$$\mathbf{p}(t) = \mathbf{a}t^3 + \mathbf{b}t^2 + \mathbf{c}t + \mathbf{d}$$

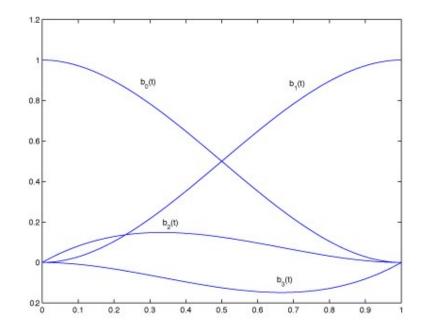


 $\mathbf{p}(t) = \frac{b_0(t)}{\mathbf{p}_0} + b_1(t)\mathbf{p}_1 + b_2(t)\mathbf{p}_2 + b_3(t)\mathbf{p}_3$

Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • 2

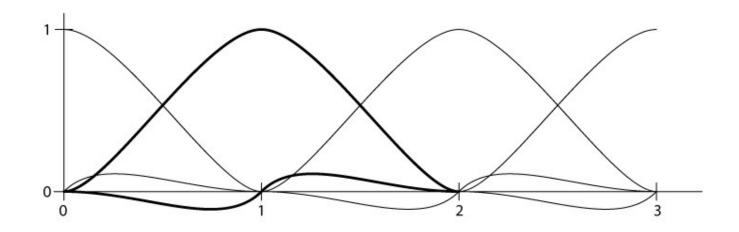
• Hermite blending functions



Longer Hermite splines

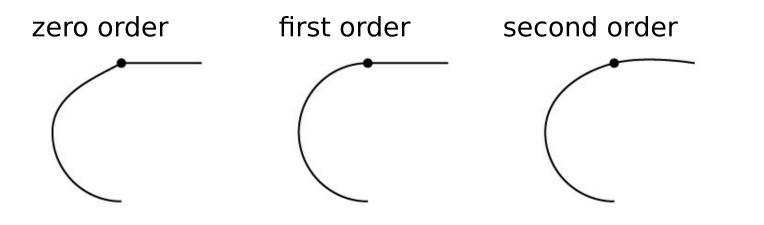
- Can only do so much with one Hermite spline
- Can use these splines as segments of a longer curve
 - curve from t = 0 to t = 1 defined by first segment
 - curve from t = 1 to t = 2 defined by second segment
- To avoid discontinuity, match derivatives at junctions
 - this produces a C^1 curve

Hermite basis functions



Continuity

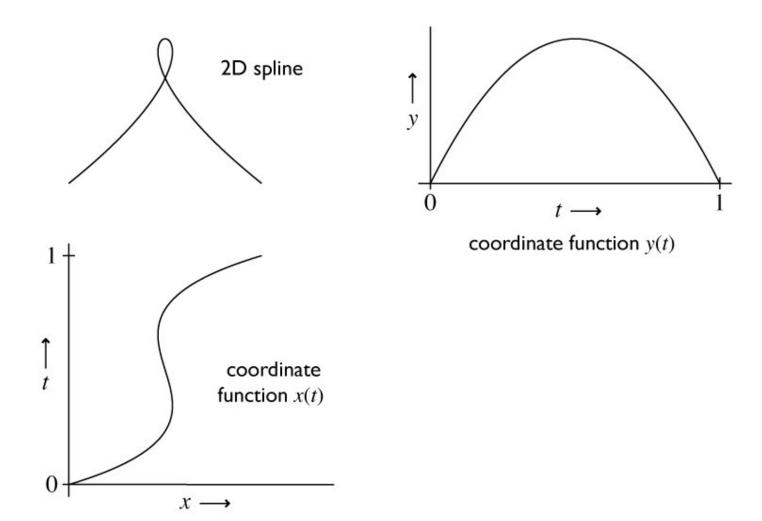
- Smoothness can be described by degree of continuity
 - zero-order (C⁰): position matches from both sides
 - first-order (C^1): tangent matches from both sides
 - second-order (C^2): curvature matches from both sides
 - *Gⁿ* vs. *Cⁿ*



Continuity

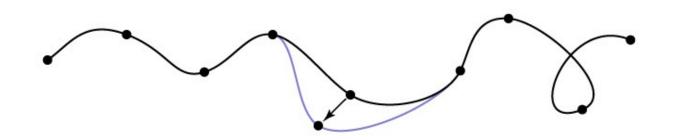
- Parametric continuity (*C*) of spline is continuity of coordinate functions
- Geometric continuity (*G*) is continuity of the curve itself
- Neither form of continuity is guaranteed by the other
 - Can be C¹ but not G¹ when **p**(t) comes to a halt (next slide)
 - Can be G¹ but not C¹ when the tangent vector changes length abruptly

Geometric vs. parametric continuity



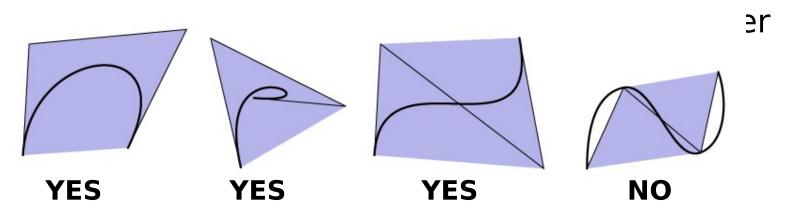
Control

- Local control
 - changing control point only affects a limited part of spline
 - without this, splines are very difficult to use
 - many likely formulations lack this
 - natural spline
 - polynomial fits



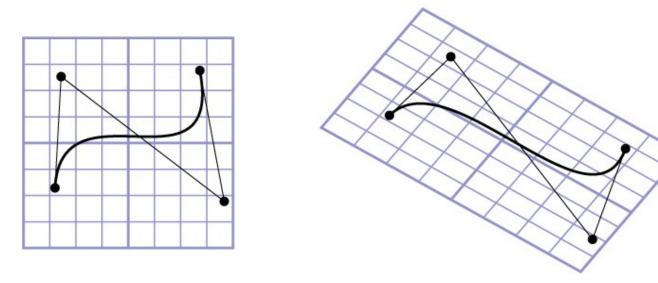
Control

- Convex hull property
 - convex hull = smallest convex region containing points
 - think of a rubber band around some pins
 - some splines stay inside convex hull of control noints



Affine invariance

- Transforming the control points is the same as transforming the curve
 - true for all commonly used splines
 - extremely convenient in practice...



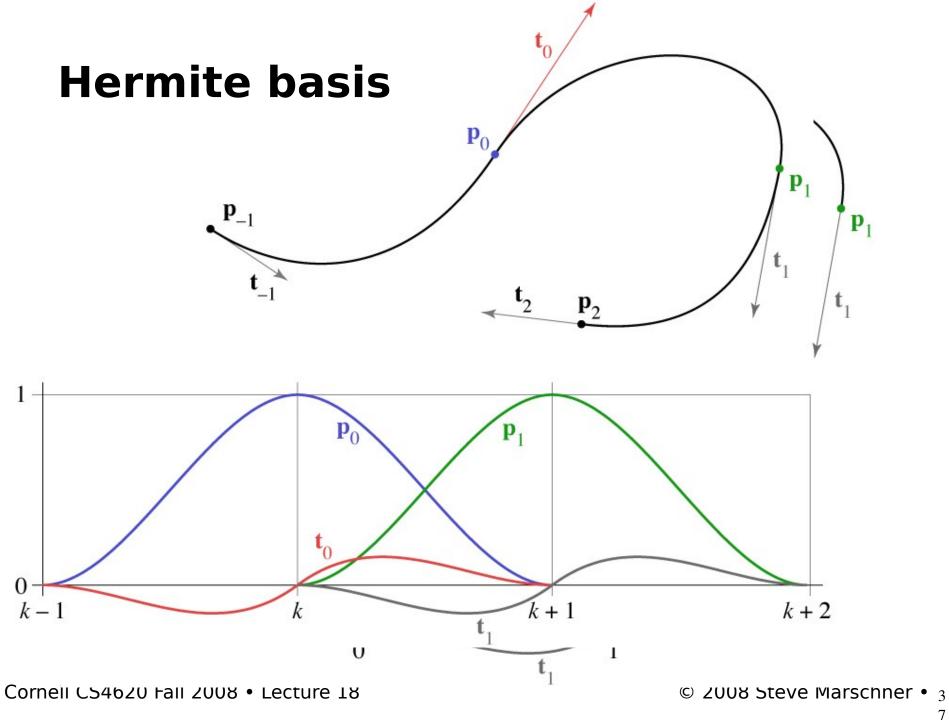
 Constraints are endpoints and endpoint tangents

$$\mathbf{p}_0$$
 \mathbf{p}_1 \mathbf{p}_1

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{v}_0 \\ \mathbf{v}_1 \end{bmatrix}$$

Cornell CS4620 Fall 2008 • Lecture 18

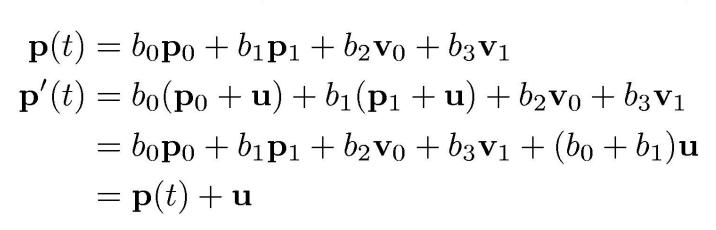
© 2008 Steve Marschner • 3



Affine invariance

 Basis functions associated with points should always sum to 1

 \mathbf{p}_1

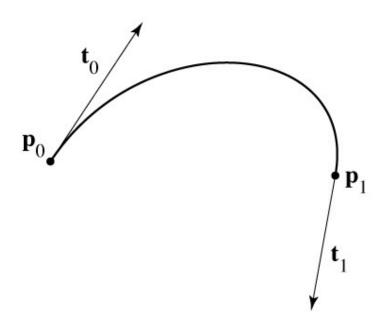


 \mathbf{p}_0'

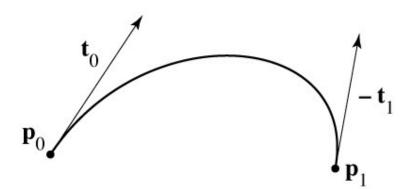
© 2008 Steve Marschner • 3

 \mathbf{p}_1

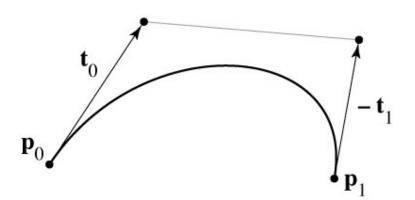
- Mixture of points and vectors is awkward
- Specify tangents as differences of points



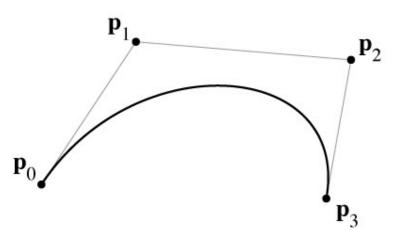
- Mixture of points and vectors is awkward
- Specify tangents as differences of points



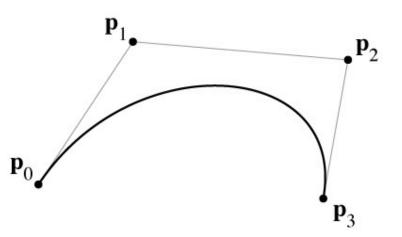
- Mixture of points and vectors is awkward
- Specify tangents as differences of points



- Mixture of points and vectors is awkward
- Specify tangents as differences of points

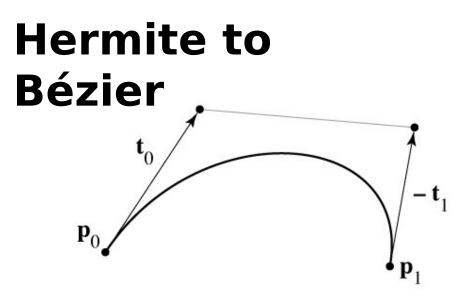


- Mixture of points and vectors is awkward
- Specify tangents as differences of points

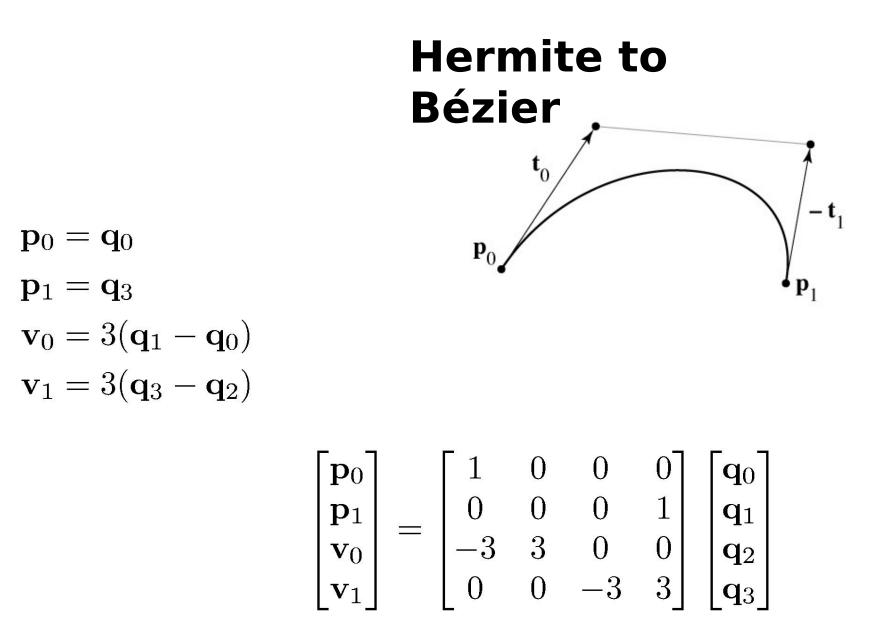


- note derivative is defined as 3 times offset t
- reason is illustrated by linear case

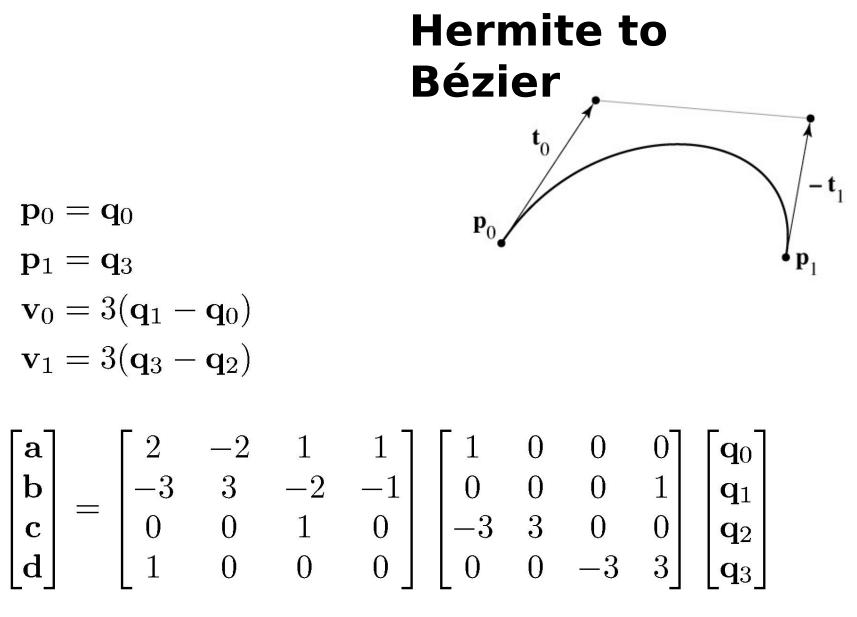
Cornell CS4620 Fall 2008 • Lecture 18



 $p_0 = q_0$ $p_1 = q_3$ $v_0 = 3(q_1 - q_0)$ $v_1 = 3(q_3 - q_2)$



5



Hermite matrix

Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • 4

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$
Hermite to
$$\mathbf{B} \acute{\mathbf{e}} \mathbf{i} \mathbf{e} \mathbf{r}$$

$$\mathbf{p}_0 = \mathbf{q}_0$$

$$\mathbf{p}_1 = \mathbf{q}_3$$

$$\mathbf{v}_0 = 3(\mathbf{q}_1 - \mathbf{q}_0)$$

$$\mathbf{v}_1 = 3(\mathbf{q}_3 - \mathbf{q}_2)$$

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \\ \mathbf{q}_3 \end{bmatrix}$$

7

Bézier matrix

$$\mathbf{p}(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{bmatrix}$$

- note that these are the Bernstein polynomials

$$C(n,k) t^k (1-t)^{n-k}$$

and that defines Bézier curves for any degree

Cornell CS4620 Fall 2008 • Lecture 18

Apply Constraint Matrix

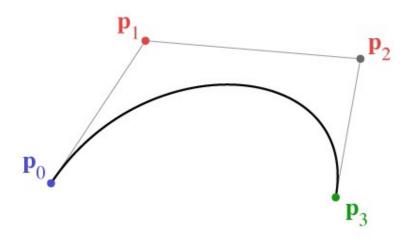
$$\begin{bmatrix} 1 & u & u^{2} & u^{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \begin{bmatrix} p_{0} \\ p_{1} \\ p_{2} \\ p_{3} \end{bmatrix}$$
$$\begin{bmatrix} (1-u)^{3} & 3u(u-1)^{2} & 3u^{2}(u-1) & u^{3} \end{bmatrix} \begin{bmatrix} p_{0} \\ p_{1} \\ p_{2} \\ p_{3} \end{bmatrix}$$
$$(1-u)^{3} p_{0} + 3u(1-u)^{2} p_{1} + 3u^{2}(1-u) p_{2} + u^{3} p_{3}$$

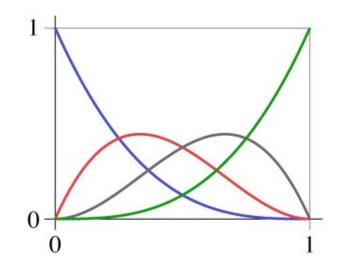
Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • 4

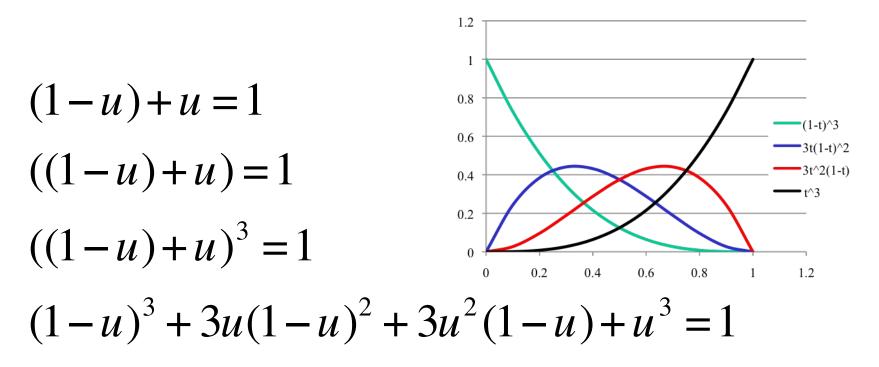
9

Bézier basis





Bezier Polynomials sum to one



So each point on the curve is a convex sum of the control points

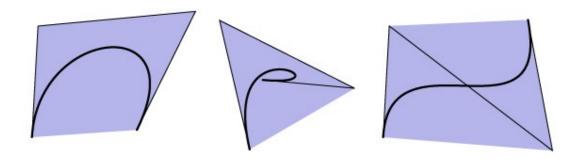
Thus the curve lies inside the convex hull of the control points

Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner •

Convex hull

- If basis functions are all positive, the spline has the convex hull property
 - we're still requiring them to sum to 1

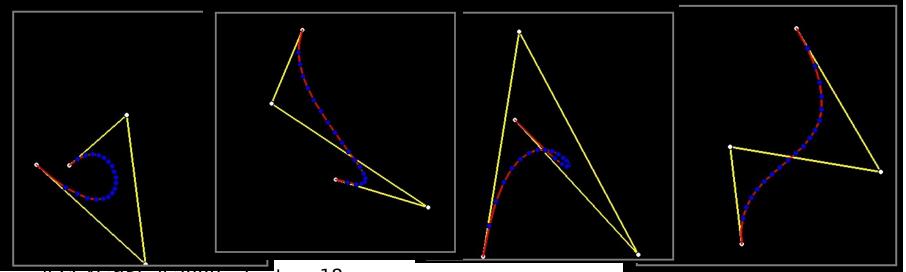


- if any basis function is ever negative, no convex hull prop.
 - proof: take the other three points at the same place

Cornell CS4620 Fall 2008 • Lecture 18

Convex Hull

Check that the curve remains inside the convex hull of the control points in our examples



Cornell CS4620 Fall 2008 • Lecture 18

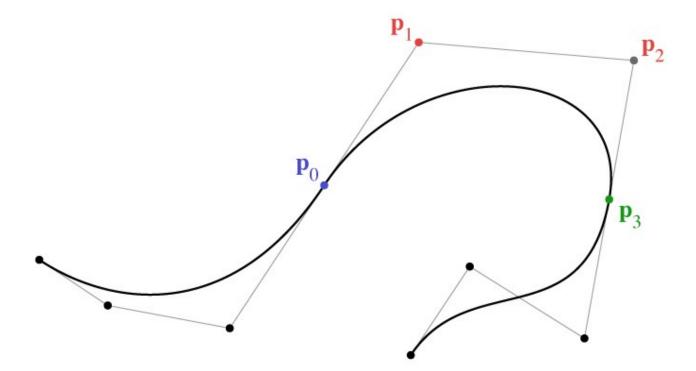
© 2008 Steve Marschner •

Chaining spline segments

- Hermite curves are convenient because they can be made long easily
- Bézier curves are convenient because their controls are all points and they have nice properties
 - and they interpolate every 4th point, which is a little odd
- We derived Bézier from Hermite by defining tangents from control points
 - a similar construction leads to the interpolating Catmull-Rom spline

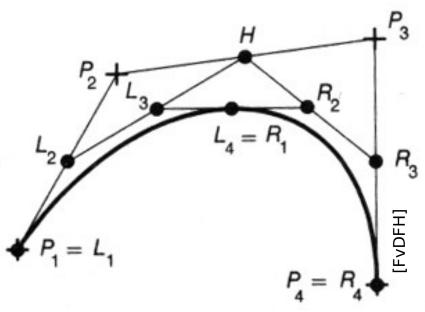
Chaining Bézier splines

- No continuity built in
- Achieve C¹ using collinear control points



Subdivision

 A Bézier spline segment can be split into a two-segment curve:



- de Casteljau's algorithm
- also works for arbitrary t

Cornell CS4620 Fall 2008 • Lecture 18

Cubic Bézier splines

- Very widely used type, especially in 2D

 e.g. it is a primitive in PostScript/PDF
- Can represent C¹ and/or G¹ curves with corners
- Can easily add points at any position
- Illustrator demo

- Have not yet seen any interpolating splines
- Would like to define tangents automatically

 use adjacent control points

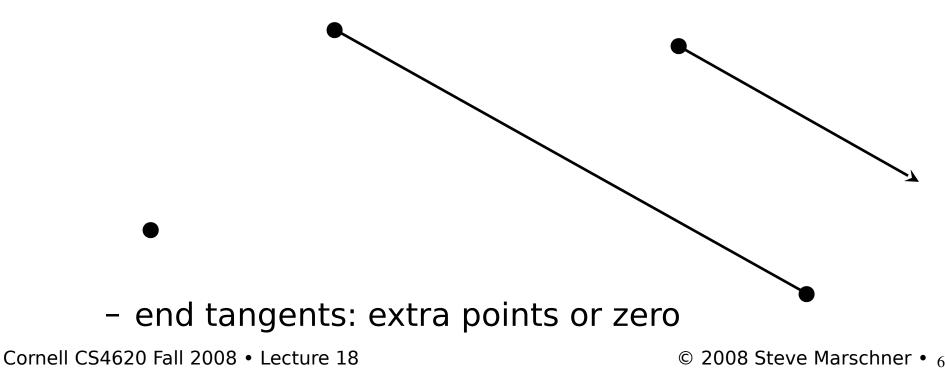
- Have not yet seen any interpolating splines
- Would like to define tangents automatically

use adjacent control points

- end tangents: extra points or zero

- Have not yet seen any interpolating splines
- Would like to define tangents automatically

 use adjacent control points



- Have not yet seen any interpolating splines
- Would like to define tangents automatically
 - use adjacent control points

- end tangents: extra points or zero

Cornell CS4620 Fall 2008 • Lecture 18

- Tangents are $(\mathbf{p}_{k+1} \mathbf{p}_{k-1}) / 2$
 - scaling based on same argument about collinear case $\mathbf{p}_0 = \mathbf{q}_k$

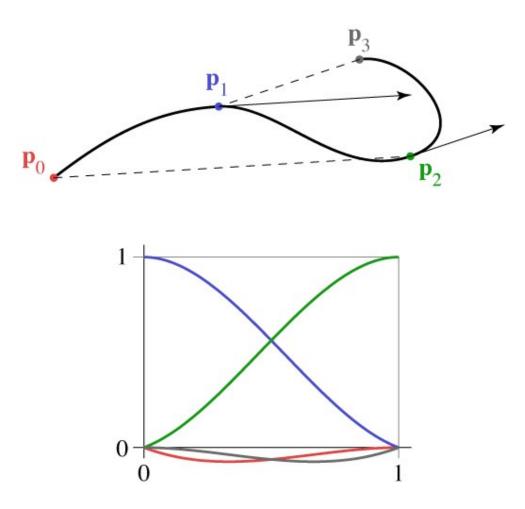
$$p_1 = q_k + 1$$

$$v_0 = 0.5(q_{k+1} - q_{k-1})$$

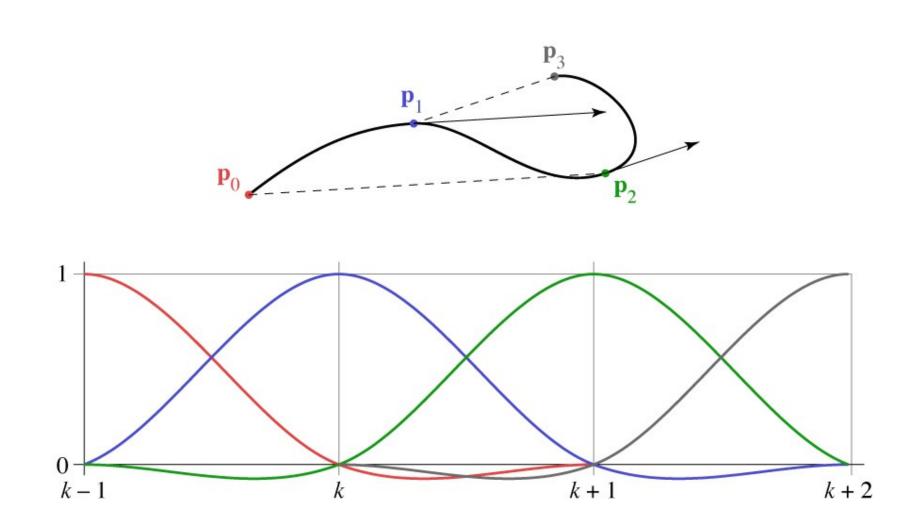
$$v_1 = 0.5(q_{k+2} - q_K)$$

 $\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{d} \end{bmatrix} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -.5 & 0 & .5 & 0 \\ 0 & -.5 & 0 & .5 \end{bmatrix} \begin{bmatrix} \mathbf{q}_{k-1} \\ \mathbf{q}_k \\ \mathbf{q}_{k+1} \\ \mathbf{q}_{k+2} \end{bmatrix}$

Catmull-Rom basis



Catmull-Rom basis



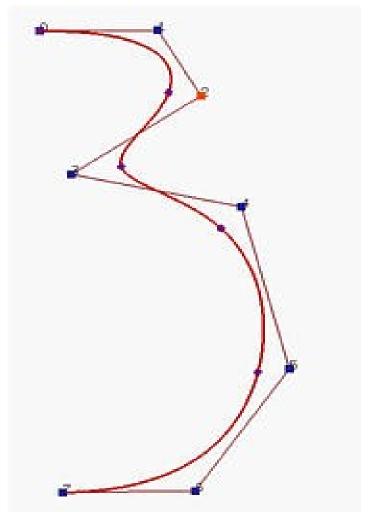
Catmull-Rom splines

- Our first example of an interpolating spline
- Like Bézier, equivalent to Hermite

 in fact, all splines of this form are equivalent
- First example of a spline based on just a control point sequence
- Does not have convex hull property

B-Spline

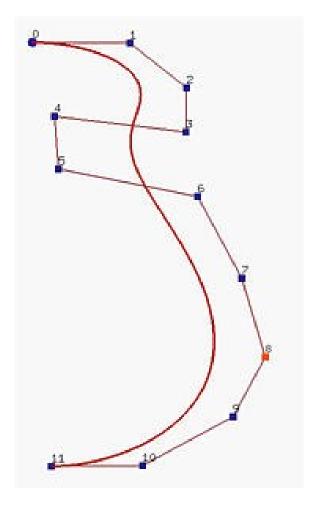
- We may want more continuity than C¹
- We may not need an interpolating spline
- B-splines are a clean, flexible way of making long splines with arbitrary order of continuity



Why B-spline. 1. High-order bezier curve instead?

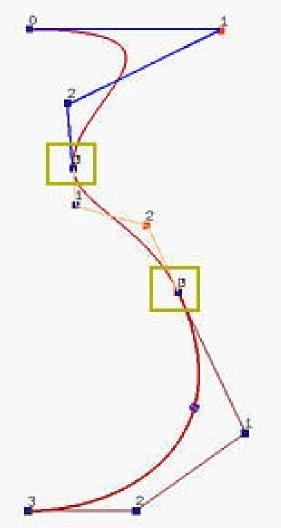
- Recall bezier curve
 - The degree of a Bezier
 Curve is determined by the number of control points
 - E. g. bezier curve degree 11

 difficult to bend the "neck" toward the line segment
 P₄P₅.
- We can add more control points, BUT this will increase the degree of the curve → increase computational burden and smoothness
 Cornell CS4620 Fall 2008 • Lecture 18



Why B-Spline. 2. Chaining cubic Bezier curves instead?

- Joint many bezier curves of lower degree together (right figure)
 - You can chain Hermite or Bezier curves
 - Catmull-Rom spline is also in this form
 - Unintuitive to control and sometimes not smooth enough



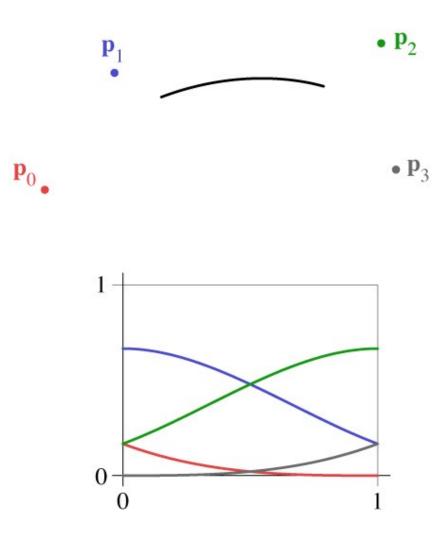
B-splines

 Use 4 points, but approximate only middle two

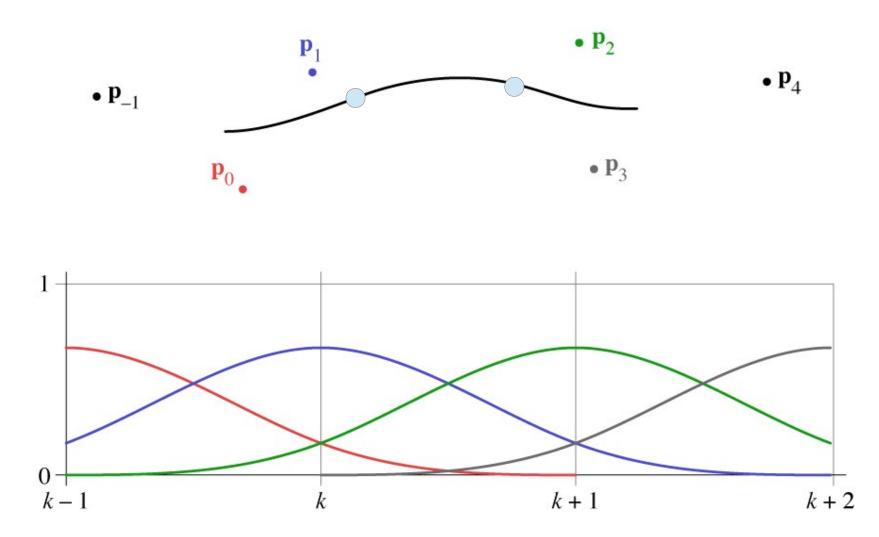
- Draw curve with overlapping segments
 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc
- Curve may miss all control points
- Smoother at joint points (why? later)

Cornell CS4620 Fall 2008 • Lecture 18

Cubic B-spline basis



Cubic B-spline basis



Cornell CS4620 Fall 2008 • Lecture 18

© 2008 Steve Marschner • 7

Deriving the B-Spline

- Want a cubic spline; therefore 4 active control points
- Want C2 continuity
 - Turns out that is enough to determine everything

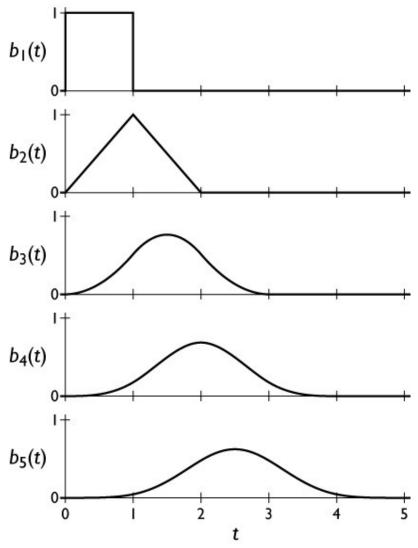
Efficient construction of any Bspline

- B-splines defined for all orders
 - order d: degree d 1
 - order *d*: *d* points contribute to value
- One definition: Cox-deBoor recurrence

$$b_{1} = \begin{cases} 1 & 0 \le u < 1 \\ 0 & \text{otherwise} \end{cases}$$
$$b_{d} = \frac{t}{d-1}b_{d-1}(t) + \frac{d-t}{d-1}b_{d-1}(t-1)$$

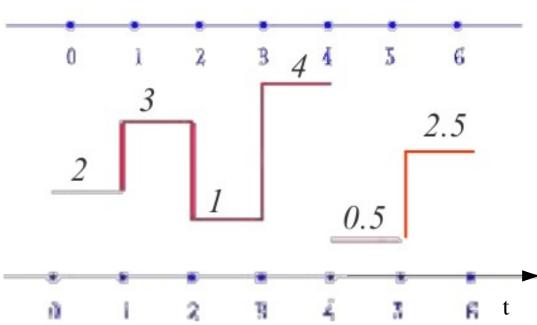
B-spline construction, alternate view

- Recurrence
 - ramp up/down
- Convolution
 - smoothing of basis fn
 - smoothing of curve



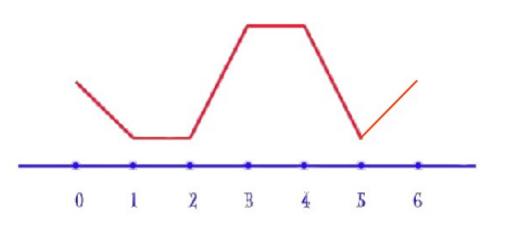
B-spline of order 1 using b1(t)

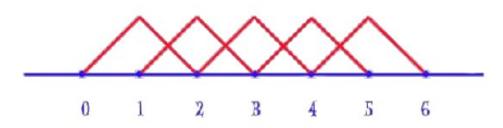
- Order =1
- Degree =0
- Discontinuous
- 1 segment basis function x(t)



B-spline of order 2 (Linear B-Splines)

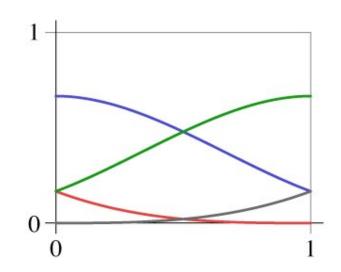
- Order =2
- Degree =1
- C0 continuous
- 2 segments

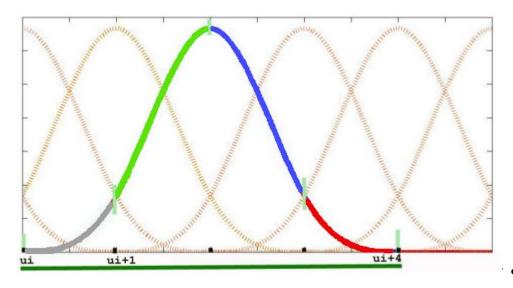




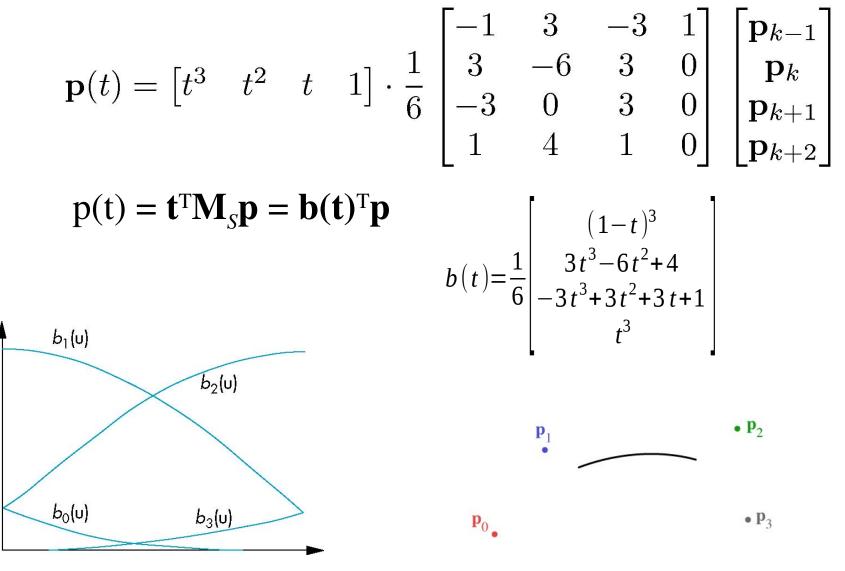
B-spline or order 4 (cubic B-spline)

- Order =4
- Degree =3
- C2 continuous
- 4 segments





Cubic B-spline matrix



Cornell CS4620 Fall 2008 • Lecture 18

Basis Functions

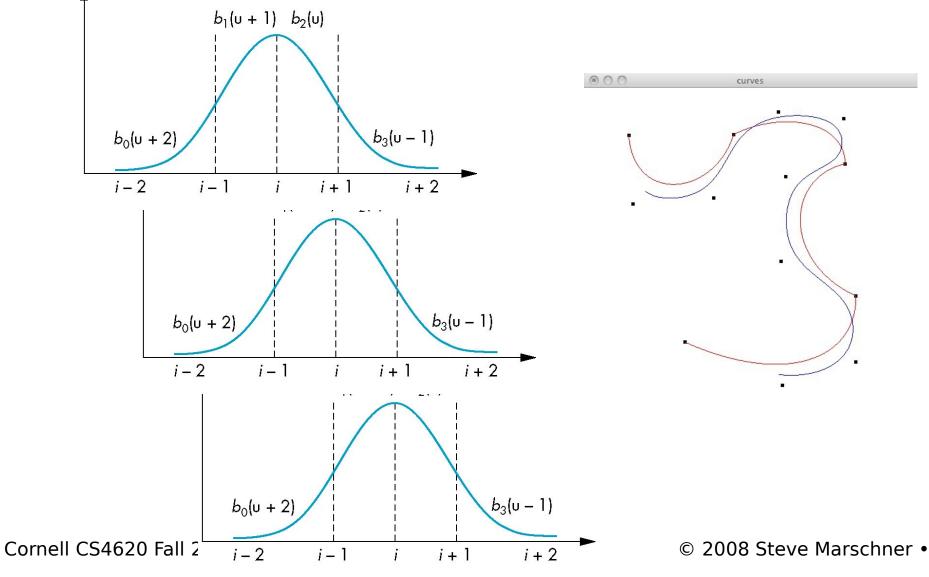
In terms of the blending polynomials

$$B_{i}(u) = \begin{cases} 0 & u < i-2 \\ b_{0}(u+2) & i-2 \le u < i-1 \\ b_{1}(u+1) & i-1 \le u < i \\ b_{2}(u) & i \le u < i+1 \\ b_{3}(u-1) & i+1 \le u < i+2 \\ 0 & u \ge i+2 \end{cases} \xrightarrow{b_{1}(u+1) \ b_{2}(u)} b_{3}(u-1) \\ \xrightarrow{b_{0}(u+2)} b_{3}(u-1) \\ \xrightarrow{b_{0}(u+2)} b_{3}(u-1) \\ \xrightarrow{i-2} & i-1 & i & i+1 & i+2 \end{cases}$$

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Cornell CS4620 Fall 2008 • Lecture 18

Basis Functions



Other types of B-splines

- Nonuniform B-splines
 - discontinuities not evenly spaced
 - allows control over continuity or interpolation at certain points
 - e.g. interpolate endpoints (commonly used case)
- Nonuniform Rational B-splines (NURBS)
 - ratios of nonuniform B-splines: x(t) / w(t); y(t) / w(t)
 - key properties:
 - invariance under perspective as well as affine
 - ability to represent conic sections exactly

Non-uniform B-Spline basis function

$$N_{i,k}(u) = (u - u_i) \frac{N_{i,k-1}(u)}{u_{i+k-1} - u_i} + (u_{i+k} - u) \frac{N_{i+1,k-1}(u)}{u_{i+k} - u_{i+1}}$$
(1.1
$$N_{i,1} = \begin{cases} 1 & u_i \leq u \leq u_{i+1} \\ 0 & \text{Otherwise} \end{cases}$$
(1.2)

→In equation (1.1), the denominators can have a value of zero, 0/0 is presumed to be zero.

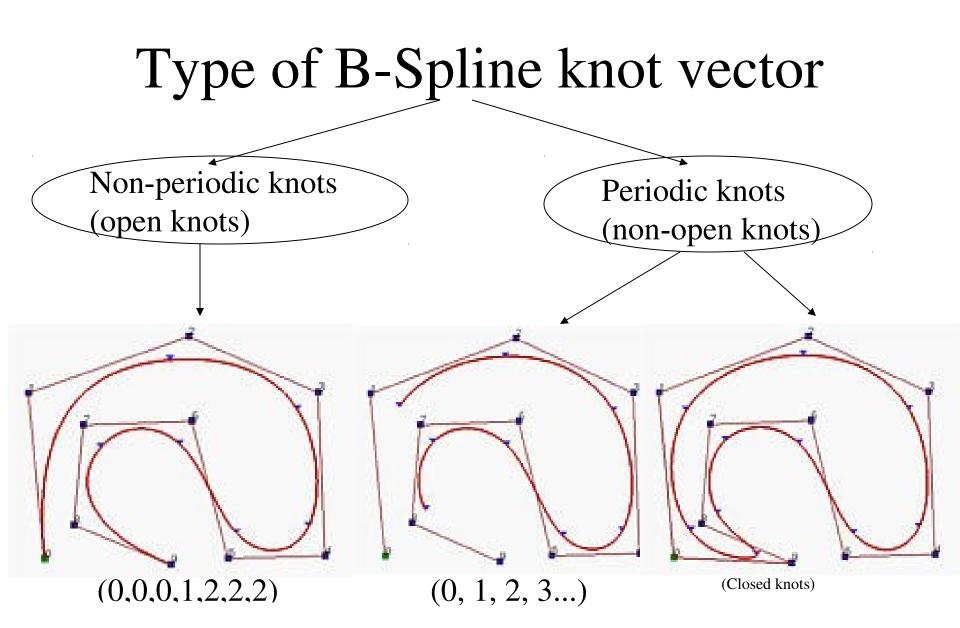
Type of B-Spline knot vector (the set of parameters t)

Non-periodic knots (open knots)

-First and last knots are duplicated k times.
-E.g (0,0,0,1,2,2,2)
-Curve pass through the first and last control points

Periodic knots (non-open knots)

-First and last knots are not duplicated – same contribution.
-E.g (0, 1, 2, 3)
-Curve doesn't pass through end points.
- can used to generate closed curves (when first = last control points)



Converting spline representations

- All the splines we have seen so far are equivalent
 - all represented by geometry matrices

 $\mathbf{p}_S(t) = T(t)M_S P_S$

- where S represents the type of spline
- therefore the control points may be transformed from one type to another using matrix multiplication $P_1 = M_1^{-1} M_2 P_2$

$$\mathbf{p}_{1}(t) = T(t)M_{1}(M_{1}^{-1}M_{2}P_{2})$$
$$= T(t)M_{2}P_{2} = \mathbf{p}_{2}(t) \quad \text{@ 200}$$

Cornell CS4620 Fall 2008 • |

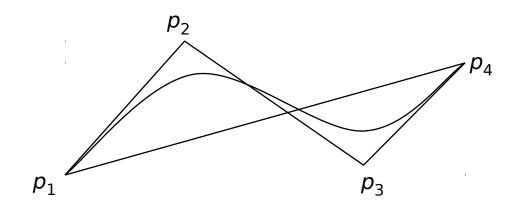
Evaluating splines for display

- Need to generate a list of line segments to draw
 - generate efficiently
 - use as few as possible
 - guarantee approximation accuracy
- Approaches
 - reccursive subdivision (easy to do adaptively)
 - uniform sampling (easy to do efficiently)

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria

distance of control points from line



н

R,

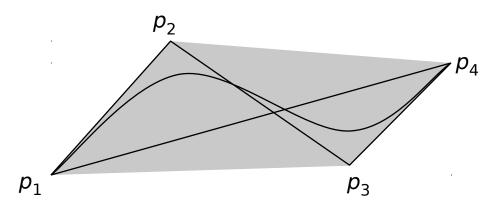
R

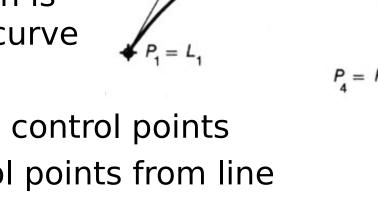
/DFH]

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria

distance of control points from line





н

R,

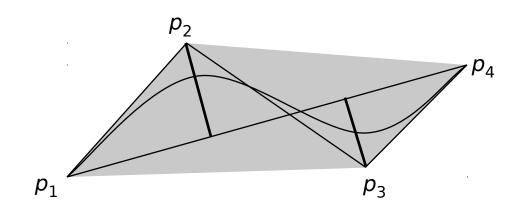
R

/DFH]

Evaluating by subdivision

- Recursively split spline
 - stop when polygon is within epsilon of curve
- Termination criteria

distance of control points from line



н

R,

R

/DFH]

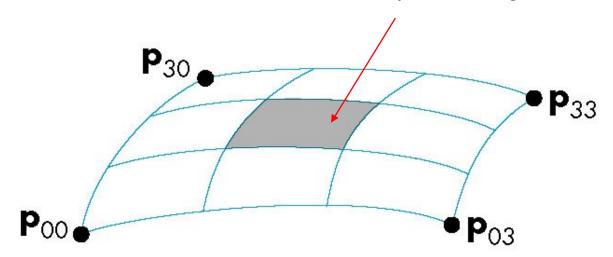
Evaluating with uniform spacing

- Forward differencing
 - efficiently generate points for uniformly spaced t values
 - evaluate polynomials using repeated differences

B-Spline Patches

$$p(u,v) = \sum_{i=0}^{3} \sum_{j=0}^{3} b_i(u) b_j(v) p_{ij} = u^T \mathbf{M}_S \mathbf{P} \mathbf{M}_S^T v$$

defined over only 1/9 of region



E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Cornell CS4620 Fall 2008 • Lecture 18