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2D Spline Curves

CS 4620 Lecture 13
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Motivation: smoothness

• In many applications we need smooth shapes
– that is, without discontinuities

• So far we can make
– things with corners (lines, squares, rectangles, …)
– circles and ellipses (only get you so far!)
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Classical approach

• Pencil-and-paper draftsmen also needed 
smooth curves

• Origin of “spline:” strip of flexible metal
– held in place by pegs or weights to constrain shape
– traced to produce smooth contour
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Translating into usable math

• Smoothness
– in drafting spline, comes from physical curvature 

minimization
– in CG spline, comes from choosing smooth 

functions
• usually low-order polynomials

• Control
– in drafting spline, comes from fixed pegs
– in CG spline, comes from user-specified control 

points
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Defining spline curves

• At the most general they are parametric 
curves

• Generally f(t) is a piecewise polynomial
– for this lecture, the discontinuities are at the 

integers
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Defining spline curves

• Generally f(t) is a piecewise polynomial
– for this lecture, the discontinuities are at the 

integers
– e.g., a cubic spline has the following form over 

[k, k + 1]:

– Coefficients are different for every interval
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Coordinate functions
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Coordinate functions
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Control of spline curves

• Specified by a sequence of control points
• Shape is guided by control points (aka 

control polygon)
– interpolating: passes through points
– approximating: merely guided by points



© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
0

How splines depend on their 
controls
• Each coordinate is separate

– the function x(t) is determined solely by the x 
coordinates of the control points

– this means 1D, 2D, 3D, … curves are all really the 
same

• Spline curves are linear functions of their 
controls
– moving a control point two inches to the right moves 

x(t) twice as far as moving it by one inch
– x(t), for fixed t, is a linear combination (weighted 

sum) of the control points’ x coordinates
– p(t), for fixed t, is a linear combination (weighted 

sum) of the control points
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Splines as reconstruction
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Trivial example: piecewise linear

• This spline is just a polygon
– control points are the vertices

• But we can derive it anyway as an 
illustration

• Each interval will be a linear function
– x(t) = at + b
– constraints are values at endpoints

– b = x0 ; a = x1 – x0

– this is linear interpolation
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Trivial example: piecewise linear

• Vector formulation

• Matrix formulation



© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 1
4

Trivial example: piecewise linear

• Basis function formulation
– regroup expression by p rather than t

– interpretation in matrix viewpoint
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Trivial example: piecewise linear

• Basis function formulation
– regroup expression by p rather than t

– interpretation in matrix viewpoint [ p0p1 ]=[ x0 y0

x1 y1
]p(t )=[ x (t ) y (t ) ]
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Trivial example: piecewise linear

• Vector blending formulation: “average of 
points”
– blending functions: contribution of each point as 

t changes
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Trivial example: piecewise linear

• Basis function formulation: “function times point”
– basis functions: contribution of each point as t changes

– can think of them as blending functions glued together

– this is just like a reconstruction filter!
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Seeing the basis functions

• Basis functions of a spline are revealed by 
how the curve changes in response to a 
change in one control
– to get a graph of the basis function, start with 

the curve laid out in a straight, constant-speed 
line
• what are x(t) and y(t)?

– then move one control straight up
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Piece these together

Create series of equations

p1

p2

p0

p3

p4
p1

p2

p3

p4

( x , y )={
0≤t<1,(1−t ) p0+tp1

1≤t<2,(2− t ) p1+( t−1 ) p2

2≤ t<3,(3−t ) p2+( t−2) p3

3≤ t<4,( 4−t ) p3+( t−3 ) p4

4≤t<5,(5−t ) p4+( t−4 ) p5

}

p0

Blending Functions
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Hermite splines

• Less trivial example
• Form of curve: piecewise cubic
• Constraints: endpoints and tangents 

(derivatives)
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Hermite splines

• Solve constraints to find coefficients

[
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

][
a
b
c
d
]=[

x0

x1

x ' 0
x ' 1

]
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Hermite splines

• Solve constraints
to find coefficients

[
0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

][
a
b
c
d
]=[

x0

x1

x ' 0
x ' 1

]

[
a
b
c
d
]=[

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

][
x0

x1

x ' 0
x ' 1

]
calculate A−1
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Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns

• note p columns sum to [0 0 0 1]T
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Hermite splines

• Matrix form is much simpler

– coefficients = rows
– basis functions = columns

• note p columns sum to [0 0 0 1]T

[
p0
p1
v0
v1

]=[
x0 y0

x1 y1

x ' 0 y ' 0
x ' 1 y ' 1

]

A−1
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Coefficients = rows
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Basis functions=columns
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Hermite splines

• Hermite blending functions
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Longer Hermite splines

• Can only do so much with one Hermite 
spline

• Can use these splines as segments of a 
longer curve
– curve from t = 0 to t = 1 defined by first 

segment
– curve from t = 1 to t = 2 defined by second 

segment

• To avoid discontinuity, match derivatives at 
junctions
– this produces a C1 curve
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Hermite splines

• Hermite basis functions
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Continuity

• Smoothness can be described by degree of 
continuity
– zero-order (C0): position matches from both sides
– first-order (C1): tangent matches from both sides
– second-order (C2): curvature matches from both sides
– Gn vs. Cn

zero order first order second order
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Continuity

• Parametric continuity (C) of spline is 
continuity of coordinate functions

• Geometric continuity (G) is continuity of the 
curve itself

• Neither form of continuity is guaranteed by 
the other
– Can be C1 but not G1 when p(t) comes to a halt 

(next slide)
– Can be G1 but not C1 when the tangent vector 

changes length abruptly
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Geometric vs. parametric 
continuity
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Control

• Local control
– changing control point only affects a limited part 

of spline
– without this, splines are very difficult to use
– many likely formulations lack this

• natural spline
• polynomial fits
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Control

• Convex  hull property
– convex hull = smallest convex region containing 

points
• think of a rubber band around some pins

– some splines stay inside convex hull of control 
points
• make clipping, culling, picking, etc. simpler

YES YES YES NO
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Affine invariance

• Transforming the control points is the same 
as transforming the curve
– true for all commonly used splines
– extremely convenient in practice…



© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 3
6

Hermite splines

• Constraints are endpoints
 and endpoint tangents
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Hermite basis 
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Affine invariance

• Basis functions associated with points 
should always sum to 1
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Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points
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Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points
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• Specify tangents as differences of points



© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4
2

Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points
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Hermite to Bézier

• Mixture of points and vectors is awkward
• Specify tangents as differences of points

– note derivative is defined as 3 times 
offset t
• reason is illustrated by linear case
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Hermite to 
Bézier
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Hermite to 
Bézier
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Hermite to 
Bézier

Hermite matrix
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Hermite to 
Bézier
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Bézier matrix

– note that these are the Bernstein polynomials

C(n,k) tk (1 – t)n – k

and that defines Bézier curves for any degree
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Apply Constraint Matrix

[1 u u2 u3 ][
1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1
] [

p0

p1

p2

p3
]

[ (1−u )3 3u (u−1)2 3u2 (u−1) u3 ] [
p0

p1

p2

p3
]

(1−u )
3 p0+3 u(1−u)

2 p1+3u2
(1−u ) p2+u3 p3
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Bézier basis
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Bezier Polynomials sum to one

€ 

(1−u)+u =1
((1−u)+u) =1

((1−u)+u)3 =1

(1−u)3 + 3u(1−u)2 + 3u2 (1−u)+u3 =1

So each point on the curve is a convex sum of the control points

Thus the curve lies inside the convex hull of the control points
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Convex hull

• If basis functions are all positive, the spline 
has the convex hull property
– we’re still requiring them to sum to 1

– if any basis function is ever negative, no convex 
hull prop.
• proof: take the other three points at the same 

place
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Convex Hull

Check that the curve remains inside the 
convex hull of the control points in our 
examples
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Chaining spline segments

• Hermite curves are convenient because 
they can be made long easily

• Bézier curves are convenient because their 
controls are all points and they have nice 
properties
– and they interpolate every 4th point, which is a 

little odd

• We derived Bézier from Hermite by defining 
tangents from control points
– a similar construction leads to the interpolating 

Catmull-Rom spline
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Chaining Bézier splines

• No continuity built in
• Achieve C1 using collinear control points
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Subdivision

• A Bézier spline segment can be split into a 
two-segment curve:

– de Casteljau’s algorithm
– also works for arbitrary t

[F
v
D

F
H

]
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Cubic Bézier splines

• Very widely used type, especially in 2D
– e.g. it is a primitive in PostScript/PDF

• Can represent C1 and/or G1 curves with 
corners

• Can easily add points at any position
• Illustrator demo 
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• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom
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• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom
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• Have not yet seen any interpolating splines
• Would like to define tangents automatically

– use adjacent control points

– end tangents: extra points or zero

Hermite to Catmull-Rom
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Hermite to Catmull-Rom

• Tangents are (pk + 1 – pk – 1) / 2
– scaling based on same argument about collinear 

case
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Catmull-Rom basis
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Catmull-Rom basis
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Catmull-Rom splines

• Our first example of an interpolating spline
• Like Bézier, equivalent to Hermite

– in fact, all splines of this form are equivalent

• First example of a spline based on just a 
control point sequence

• Does not have convex hull property
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B-Spline

• We may want more 
continuity than C1

• We may not need an 
interpolating spline

• B-splines are a clean, 
flexible way of making 
long splines with arbitrary 
order of continuity
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Why B-spline.
1. High-order bezier curve 
instead?

• Recall bezier curve
– The degree of a Bezier 

Curve is determined by the 
number of control points

– E. g. bezier curve degree 11 
– difficult to bend the "neck" 
toward the line segment 
P4P5. 

– We can add more control 
points, BUT this will increase 
the degree of the curve  
increase computational 
burden and smoothness
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• Joint many bezier curves of 
lower degree together (right 
figure)
– You can chain Hermite or 

Bezier curves
– Catmull-Rom spline is also 

in this form
– Unintuitive to control and 

sometimes not smooth 
enough

Why B-Spline.
2. Chaining cubic Bezier curves 
instead?
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B-splines

• Use 4 points, but approximate only middle 
two

• Draw curve with overlapping segments
– 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc

• Curve may miss all control points
• Smoother at joint points (why? - later)
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Cubic B-spline basis



© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 7
1

Cubic B-spline basis
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Deriving the B-Spline

• Want a cubic spline; therefore 4 active 
control points

• Want C2 continuity
– Turns out that is enough to determine everything
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Efficient construction of any B-
spline
• B-splines defined for all orders

– order d: degree d – 1
– order d: d points contribute to value

• One definition: Cox-deBoor recurrence
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B-spline construction, alternate 
view
• Recurrence

– ramp up/down

• Convolution
– smoothing of basis fn
– smoothing of curve
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B-spline of order 1 using b1(t)

t

x(t)

• Order =1
• Degree =0
• Discontinuous
• 1 segment basis 

function
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B-spline of order 2 (Linear B-
Splines)
• Order =2
• Degree =1
• C0 continuous
• 2 segments
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B-spline or order 4 (cubic B-spline)

• Order =4
• Degree =3
• C2 continuous
• 4 segments
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Cubic B-spline matrix

p(t) = tTMSp = b(t)Tp

b ( t )=
1
6 [

(1−t )3

3 t3−6 t2+4
−3 t 3+3 t2+3 t+1

t3
]
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Basis Functions
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In terms of the blending polynomials

E. Angel and D. Shreiner: Interactive Computer 
Graphics 6E © Addison­Wesley 2012
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Basis Functions
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Other types of B-splines

• Nonuniform B-splines
– discontinuities not evenly spaced
– allows control over continuity or interpolation at 

certain points
– e.g. interpolate endpoints (commonly used case)

• Nonuniform Rational B-splines (NURBS)
– ratios of nonuniform B-splines: x(t) / w(t); y(t) / 

w(t)
– key properties:

• invariance under perspective as well as affine
• ability to represent conic sections exactly
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Non-uniform B-Spline basis 
function
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In equation (1.1), the denominators can have a value of 
zero, 0/0 is presumed to be zero.

Otherwise    

(1.1)

(1.2)
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Type of B-Spline knot vector 
(the set of parameters t)

Non­periodic knots 
(open knots)

Periodic knots 
(non­open knots)

-First and last knots are 
duplicated k times.
-E.g (0,0,0,1,2,2,2)
-Curve pass through the 
first and last control 
points

-First and last knots are 
not duplicated – same 
contribution.
-E.g (0, 1, 2, 3)
-Curve doesn’t pass 
through end points.
- can used to generate 
closed curves (when first 
= last control points)
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Type of B­Spline knot vector

Non­periodic knots 
(open knots)

Periodic knots 
(non­open knots)

(Closed knots)(0,0,0,1,2,2,2)  (0, 1, 2, 3...)
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Converting spline 
representations
• All the splines we have seen so far are 

equivalent
– all represented by geometry matrices

• where S represents the type of spline
– therefore the control points may be transformed 

from one type to another using matrix 
multiplication
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Evaluating splines for display

• Need to generate a list of line segments to 
draw
– generate efficiently
– use as few as possible
– guarantee approximation accuracy

• Approaches
– reccursive subdivision (easy to do adaptively)
– uniform sampling (easy to do efficiently)
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Evaluating by subdivision

– Recursively split spline 
• stop when polygon is 

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4

[F
v
D

F
H

]
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Evaluating by subdivision

– Recursively split spline 
• stop when polygon is 

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4
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v
D

F
H

]



© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 8
9

Evaluating by subdivision

– Recursively split spline 
• stop when polygon is 

within epsilon of curve
– Termination criteria

• distance between control points
• distance of control points from line

p1

p2

p3

p4

[F
v
D

F
H

]
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Evaluating with uniform spacing

• Forward differencing
– efficiently generate points for uniformly spaced t 

values
– evaluate polynomials using repeated differences
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E. Angel and D. Shreiner: Interactive 
Computer Graphics 6E © Addison­

Wesley 2012

B-Spline Patches
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