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Antialiasing & Compositing

CS465 Lecture 17
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Aliasing

continuous image defined
by ray tracing procedure

continuous image defined
by a bunch of black rectangles

point sampling a
continuous image:
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Antialiasing

• A name for techniques to prevent aliasing
• In image generation, we need to lowpass 

filter
– Averaging the image over an area
– Weight by a filter

• Methods depend on source of image
– Rasterization (lines and polygons)
– Point sampling (e.g. raytracing)
– Texture mapping



© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture 
17

Rasterizing lines

• Define line as a 
rectangle

• Specify by two 
endpoints

• Ideal image: 
black inside, 
white outside
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Point sampling

• Approximate 
rectangle by 
drawing all 
pixels whose 
centers fall 
within the line

• Problem: all-or-
nothing leads 
to jaggies



© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture 
17

Point sampling
in action
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Aliasing

• Point sampling is fast and simple
• But the lines have stair steps and variations 

in width
• This is an aliasing phenomenon

– Sharp edges of line contain high frequencies

• Introduces features to image that are not
supposed to be there!
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Antialiasing

• Point sampling makes an all-or-nothing 
choice in each pixel
– therefore steps are inevitable when the choice 

changes
– discontinuities are BAD in computer graphics

• On bitmap devices this is necessary
– hence high resolutions required
– 600+ dpi in laser printers to make aliasing 

invisible

• On continuous-tone devices we can do 
better
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Antialiasing

• Basic idea: 
replace “is the 
image black at 
the pixel 
center?” with 
“how much is 
pixel covered by 
black?”

• Replace yes/no 
question with 
quantitative 
question.
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Box filtering

• Pixel intensity is proportional to area of 
overlap with square pixel area

• Also called “unweighted area averaging” 
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Box filtering by supersampling

• Compute 
coverage 
fraction by 
counting 
subpixels

• Simple, accurate
• But slow
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Box filtering
in action
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Weighted filtering

• Box filtering problem: treats area near edge 
same as area near center
– results in pixel turning on “too abruptly”

• Alternative: weight area by a smoother filter
– unweighted averaging corresponds to using a 

box function
– sharp edges mean high frequencies

• so want a filter with good extinction for higher 
freqs.

– a gaussian is a popular choice of smooth filter
– important property: normalization (unit integral)
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Weighted filtering by 
supersampling
• Compute 

filtering integral 
by summing 
filter values for 
covered 
subpixels

• Simple, accurate
• But really slow
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Gaussian filtering
in action
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Filter comparison

Point 
sampling

Box filtering Gaussian filtering
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Antialiasing and resampling

• Antialiasing by regular supersampling is the 
same as rendering a larger image and then 
resampling it to a smaller size

• Convolution of filter with high-res image 
produces an estimate of the area of the 
primitive in the pixel.

• So we can re-think this
– one way: we’re computing area of pixel covered 

by primitive
– another way: we’re computing average color of 

pixel
• this way generalizes easily to arbitrary filters, 

arbitrary images
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Antialiasing in ray tracing

aliased image
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Antialiasing in ray tracing

aliased image

one sample per pixel
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Antialiasing in ray tracing

antialiased image

four samples per pixel
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Antialiasing in ray tracing

one sample/pixel 9 samples/pixel
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// one sample per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      ray = camera.getRay(ix, iy);
      image.set(ix, iy, trace(ray));
   }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
   for ix = 0 to (nx-1) by 1 {
      Color sum = 0;
      for dx = -(ns-1)/2 to (ns-1)/2 by 1
         for dy = -(ns-1)/2 to (ns-1)/2 by 1 
{
            x = ix + dx / ns;
            y = iy + dy / ns; 
            ray = camera.getRay(x, y);
            sum += trace(ray);
         }
      image.set(ix, iy, sum / (ns*ns));
   }
         

Details of supersampling

• For image coordinates with integer pixel 
centers:
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Antialiasing in textures

• Would like to render textures with one (or 
few) sampling without aliasing

• Need to filter first!
– perspective produces very high image 

frequencies
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Sampling texture maps



Sampling density mismatch



Handling oversampling 
(magnification)



Handling oversampling 
(magnification)



Handling oversampling 
(magnification)



Texture minification
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Mipmap image pyramid
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Finding MIP level

• Use the projection of a pixel in screen into texture 
space to figure out which level to use
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mipmap 
minificatio
n

point 
sampled 
minificatio
n
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Texture minification
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higher 
quality 
minificatio
n
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Texture minification

mipmap 
minificatio
n
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Storing MIP Maps

• 1/3 overhead of maintaining the MIP maps
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Summed-Area Tables

• Another way of performing the prefiltering integration 
on the fly

• Each entry in the summed area table is the sum of all 
entries above and to the left:
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Summed-Area Tables

• How much storage 
does a summed-area 
table require?

• Does it require more 
or less work per pixel 
than a MIP map?
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