
© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing & Compositing

CS465 Lecture 17

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Aliasing

continuous image defined
by ray tracing procedure

continuous image defined
by a bunch of black rectangles

point sampling a
continuous image:

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing

• A name for techniques to prevent aliasing
• In image generation, we need to lowpass

filter
– Averaging the image over an area
– Weight by a filter

• Methods depend on source of image
– Rasterization (lines and polygons)
– Point sampling (e.g. raytracing)
– Texture mapping

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Rasterizing lines

• Define line as a
rectangle

• Specify by two
endpoints

• Ideal image:
black inside,
white outside

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Point sampling

• Approximate
rectangle by
drawing all
pixels whose
centers fall
within the line

• Problem: all-or-
nothing leads
to jaggies

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Point sampling
in action

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Aliasing

• Point sampling is fast and simple
• But the lines have stair steps and variations

in width
• This is an aliasing phenomenon

– Sharp edges of line contain high frequencies

• Introduces features to image that are not
supposed to be there!

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing

• Point sampling makes an all-or-nothing
choice in each pixel
– therefore steps are inevitable when the choice

changes
– discontinuities are BAD in computer graphics

• On bitmap devices this is necessary
– hence high resolutions required
– 600+ dpi in laser printers to make aliasing

invisible

• On continuous-tone devices we can do
better

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing

• Basic idea:
replace “is the
image black at
the pixel
center?” with
“how much is
pixel covered by
black?”

• Replace yes/no
question with
quantitative
question.

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Box filtering

• Pixel intensity is proportional to area of
overlap with square pixel area

• Also called “unweighted area averaging”

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Box filtering by supersampling

• Compute
coverage
fraction by
counting
subpixels

• Simple, accurate
• But slow

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Box filtering
in action

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Weighted filtering

• Box filtering problem: treats area near edge
same as area near center
– results in pixel turning on “too abruptly”

• Alternative: weight area by a smoother filter
– unweighted averaging corresponds to using a

box function
– sharp edges mean high frequencies

• so want a filter with good extinction for higher
freqs.

– a gaussian is a popular choice of smooth filter
– important property: normalization (unit integral)

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Weighted filtering by
supersampling
• Compute

filtering integral
by summing
filter values for
covered
subpixels

• Simple, accurate
• But really slow

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Gaussian filtering
in action

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Filter comparison

Point
sampling

Box filtering Gaussian filtering

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing and resampling

• Antialiasing by regular supersampling is the
same as rendering a larger image and then
resampling it to a smaller size

• Convolution of filter with high-res image
produces an estimate of the area of the
primitive in the pixel.

• So we can re-think this
– one way: we’re computing area of pixel covered

by primitive
– another way: we’re computing average color of

pixel
• this way generalizes easily to arbitrary filters,

arbitrary images

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing in ray tracing

aliased image

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing in ray tracing

aliased image

one sample per pixel

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing in ray tracing

antialiased image

four samples per pixel

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing in ray tracing

one sample/pixel 9 samples/pixel

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

// one sample per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 ray = camera.getRay(ix, iy);
 image.set(ix, iy, trace(ray));
 }

// ns^2 samples per pixel
for iy = 0 to (ny-1) by 1
 for ix = 0 to (nx-1) by 1 {
 Color sum = 0;
 for dx = -(ns-1)/2 to (ns-1)/2 by 1
 for dy = -(ns-1)/2 to (ns-1)/2 by 1
{
 x = ix + dx / ns;
 y = iy + dy / ns;
 ray = camera.getRay(x, y);
 sum += trace(ray);
 }
 image.set(ix, iy, sum / (ns*ns));
 }

Details of supersampling

• For image coordinates with integer pixel
centers:

© 2006 Steve Marschner • Cornell CS465 Spring 2006 • Lecture
17

Antialiasing in textures

• Would like to render textures with one (or
few) sampling without aliasing

• Need to filter first!
– perspective produces very high image

frequencies

[A
ke

n
in

e
-M

ö
lle

r
&

 H
a
in

e
s

2
0

0
2

]

minification

magnification

Sampling texture maps

Sampling density mismatch

Handling oversampling
(magnification)

Handling oversampling
(magnification)

Handling oversampling
(magnification)

Texture minification

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 3
0

[A
ke

n
in

e
-M

ö
lle

r
&

 H
a
in

e
s

2
0

0
2

]

Mipmap image pyramid

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 3
1

Finding MIP level

• Use the projection of a pixel in screen into texture
space to figure out which level to use

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 3
2

mipmap
minificatio
n

point
sampled
minificatio
n

[A
ke

n
in

e
-M

ö
lle

r
&

 H
a
in

e
s

2
0

0
2

]

Texture minification

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 3
3

higher
quality
minificatio
n

[A
ke

n
in

e
-M

ö
lle

r
&

 H
a
in

e
s

2
0

0
2

]

Texture minification

mipmap
minificatio
n

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 3
4

Storing MIP Maps

• 1/3 overhead of maintaining the MIP maps

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 3
5

Summed-Area Tables

• Another way of performing the prefiltering integration
on the fly

• Each entry in the summed area table is the sum of all
entries above and to the left:

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 3
6

Summed-Area Tables

• How much storage
does a summed-area
table require?

• Does it require more
or less work per pixel
than a MIP map?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

