
Rigging / Skinning

based on

Taku Komura, Jehee Lee and

Charles B.Own's slides

CSE 872 Dr. Charles B. Owen
Advanced Computer Graphics2

Skeletal Animation

Victoria

http://www.msu.edu/

Skinning

• Assuming the skin mesh is given

• 1. Kinamatics : How the motions of the
skeleton are given

• 2. Skinning : How the character’s skin
deform according to the motion of the
skeleton

http://www.youtube.com/watch?
v=dniWVu55PEc&feature=related

http://www.youtube.com/watch?
v=z0QWBdk8MCA&feature=related

Kinematics

• How to animate skeletons
(articulated figures)

• Kinematics is the study of
motion (without regard to
the forces that caused it)

Backgrounds

• A transformation matrix (4x4) is defined per
bone that converts local coordinates to world
coordinates
















=

















i
l

i
l

i
l

i
i
g

i
g

i
g

z

y

x

M

z

y

x

















i
l

i
l

i
l

z

y

x

Hierarchical Models

• Tree structure of joints and bones
– The root bone can be chosen arbitrarily
– Usually the pelvis bone is the root bone

• A Joint connect two bones
– Revolute (hinge) joint allows rotation about a fixed axis
– Prismatic joint allows translation along a line
– Ball-and-socket joint allows rotation about an arbitrary axis

Human Joints

• Human joints are actually much more complicated,
but ...

Forward Kinematics

1θ

2θ

)F(),(iθ=qp),(F 1 qp−=iθ
Forward Kinematics Inverse Kinematics

1θ

2θ

Forward Kinematics: A Simple Example

• A simple robot arm in 2-dimensional space
– 2 revolute joints
– Joint angles are known
– Compute the position of the end-effector

)sin(sin

)cos(cos

21211

21211

θθθ
θθθ

++=
++=

lly

llx

e

e

2θ

1θ
1l

2l

),(ee yx

3D Transformations

• The position and orientation of an object is
represented as a rigid transformation

• Vector & 3x3 Matrix

• 4x4 Matrix

• Vector & Quaternion

pqvq +−1

pRv +













=

11

v

0

pR
Tv

X ′
Y ′

X

Y

Forward Kinematics: A Simple Example

• Forward kinematics map as a coordinate transformation
– that transforms the position and orientation of the end-effector

according to joint angles

θ2

θ1

l1

X '

Y '
































=

















1

0

0

1

Ty

x

e

el2

X

Y

A Chain of Transformations
































=

















1

0

0

1

Ty

x

e

e

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

2θ

1θ
1l

X ′
Y ′

2l

X

Y

Thinking of Transformations

• In a view of body-attached coordinate system

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

X

Y

X ′
Y ′

X

Y

Thinking of Transformations

• In a view of body-attached coordinate system

1θ
X ′

Y ′

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

Thinking of Transformations

• In a view of body-attached coordinate system

1θ
1L

X ′
Y ′

X

Y

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

2θ

1θ
1L

X ′
Y ′

Thinking of Transformations

• In a view of body-attached coordinate system

X

Y

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

2θ

1θ
1L

X ′
Y ′

2L

Thinking of Transformations

• In a view of body-attached coordinate system

X

Y

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

Thinking of Transformations

• In a view of global coordinate system

X

Y

X ′
Y ′

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

Thinking of Transformations

• In a view of global coordinate system

X ′

Y ′

2L

X

Y

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

2θ

X ′Y ′

2L

Thinking of Transformations

• In a view of global coordinate system

X

Y

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

Thinking of Transformations

• In a view of global coordinate system

2θ1L

X ′Y ′

2L

X

Y

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

Thinking of Transformations

• In a view of global coordinate system

2θ

1θ
1L

X ′
Y ′

2L

X

Y

() () () ()































 −































 −
=

=

100

010

01

100

0cossin

0sincos

100

010

01

100

0cossin

0sincos 2

22

221

11

11

2211

ll

translrottranslrotT

θθ
θθ

θθ
θθ

θθ

How to Handle Ball-and-Socket Joints ?

• Three revolute joints whose axes intersect at a
point (equivalent to Euler angles), or

• 3D rotation about an arbitrary axis

() () () () ()



















 −



















−

















−

=

=

1000

0100

00cossin

00sincos

1000

0cos0sin

0010

0sin0cos

1000

0cossin0

0sincos0

0001

21

zz

zz

yy

yy

xx

xx

zyx translrotrotrottranslT

θθ
θθ

θθ

θθ

θθ
θθ

θθθ

Floating Base

• The position and orientation of the root segment
are added

1θ

2θ

3θ

T 2= (transl r) (rot θr) (transl 1) (rot θ1) (transl2) (rot θ2)

X

Y

l2

l1

l3

Joint & Link Transformations

• Each segment has its own coordinate frame
• Forward kinematics map is an alternating multiple of

– Joint transformations : represents joint movement

• Usually rotations
– Link transformations : defines a frame relative to its parent

• Usually translations (bone-length)

1L

3L

2L
3322110 JLJLJLJT =

The position and orientation of
the root segment

1st link transformation

1st joint transformation

Joint & Link Transformations

Note that
– Joint transformations may include translation

• Human joints are not ideal hinges
– Link transformations may include rotation

• Some links are twisted

Representing Hierarchical Models

• A tree structure
– A node contains a joint transformation
– An arc contains a link transformation

0J

1J

2J

3J

1L

2L

3L

Depth-First Tree Traversal

• Draw graphics needs to compute the position and
orientation of all links

• OpenGL’s matrix stack is useful
0J

1J

2J

3J

1L

2L

3L

Motion Capture

BVH mocap file format

• The Biovision Hierarchy (BVH) file
format was developed by Biovision, a
motion capture company.

• It stores motion capture data.
• It’s a text file.
• It matches with OpenGL well.
• It has two parts: hierarchy and data.

Part 1: Hierarchy

• The hierarchy is a joint tree.
• Each joint has an offset and a channel list.

• Joint 1:
• Offset: L1
• The channel list

defines a
sequence

 of transformations
 of J1

0J

1J

2J

3J

1L

2L

3L

An example

An example
Chest Joint and its local coordinate system

Neck Joint and its local coordinate system

Neck’s offset from chest
(like a bone)

Channel list:
Transformation from chest coordinate

 system to neck coordinate system

Part 2: Data

MOTION
Frames: 4620
Frame Time: 0.008333
 0.4954 -10.3314 36.8439 -1.0364 -2.0052 92.3287 6.5990 -0.8348 14.2185 0.0000
13.7079 12.9074 -5.0440 -2.9531 -19.4662 -0.0000 -36.9689 -0.0000 -5.8559 -2.0372
-19.6725 0.0000 16.1210 -14.2594 6.5762 2.0311 25.2317 -0.0000 -40.3850 -0.0000
0.4920 -11.6100 42.3449 1.5698 -10.2585 -1.3778 -1.6618 12.8953 -7.8738 -6.1442
0.0000 22.3789 19.4173 -9.7285 -32.4893 0.0000 -24.5218 -6.5960 5.5760 2.4836
-0.0000 18.7680 -0.0000 -2.8578 ...

Variable 1 Variable 2 Variable 3

Variable 4 Variable 5 Variable 6

Variable 7 Variable 8 Variable 9

• The data part stores a number of frames.
• Each frame is a list of variables.
• The model is animated, when each frame uses

variables.

Part 2: Data

Summary

• Kinematics is the study of motion of articulated figures
– Kinematics does not consider physics (forces, mass, …)

• Forward kinematics is straightforward
– Forward kinematics map can be considered as a chain of

coordinate transformations

Skinning

• Assuming the skin mesh is given

• 1. Kinematics : How the motions of the
skeleton are given

• 2. Skinning : How the character’s skin
deform according to the motion of the
skeleton

http://www.youtube.com/watch?
v=dniWVu55PEc&feature=related

http://www.youtube.com/watch?
v=z0QWBdk8MCA&feature=related

For robots, skinning is trivial
• Compute the local-to-global

matrix for all body segments : M
• Multiply the local coordinates v of

every body segment to this matrix
to calculate its global position :

• Then, the global position of all the

points can be computed

v̂=Mv

What about for characters?

 A single mesh is modeled : the rest pose

Rest Pose to Bone Coordinate

• the global position of a particular vertex, v, in the
rest pose is written as

• The transformation matrix associated with bone i
in the rest pose is written as

v̂

iM̂

Rest pose:
 The pose in which surface
mesh is modeled

Rest Pose to Bone Coordinate

• for each bone, i, the position of the vertex in the
rest pose is first transformed from model
coordinates () to bone coordinates () by
applying the inverse of the rest pose bone
transformation:

iv̂

vMv 1
ii ˆˆˆ −=

v̂

Bone Coordinate to World Coordinate

• The vertex in bone coordinates, is then
transformed back into world coordinates by
applying the transformation of the bone in its
new skeletal configuration:

posture new in the

matrix global-to-local the:

ˆˆˆ

i

1
iiiii

M

vMMvMv −==

iv̂

Problem :

• For some points, we don’t know to which body
segment it belongs to

• For the points near the elbow joint, it might belong
to the upper arm , or the forearm or maybe both

• We want both segments to affect its movements

• What is the position of
point A after the elbow
is bent 90 degrees?

• What is the position of
point A after the elbow
is bent 90 degrees?

• Assuming it is a point
of the upper arm

A
(3,1)

• What is the position of
point A after the elbow
is bent 90 degrees?

• Assuming it is a point
of the upper arm

• Assuming it is a point
of the lower arm

A
(-1,1)

• What is the position of
point A after the elbow
is bent 90 degrees?

• Assuming it is a point
of the upper arm

• Assuming it is a point
of the lower arm

• Assuming the weight
is 0.8 for the upper-
arm and 0.2 for the
forearm

A

Solution: Linear Blending
• Linear Blending determines the new position of

a vertex by linearly combining the results of the
vertex transformed rigidly with each bone.

• A scalar weight, wi, is given to each influencing
bone and the weighted sum gives the vertex’s
position, v, in the new pose, as follows:

b is the number of bones influencing the position of v

∑∑
==

− ==
b

i
i

b

i
i ww

11

1 ˆˆ vMMv 1
iii

How to decide the weights?
Decide the mapping of the vertex to the bone

– If vertex v is in the middle of bone i, then and for the rest

– If the vertex is near the border of bone i and i+1, wi will
gradually decrease to 0 and wi+1 will gradually increase to 1

– If the vertex is affected by more than three bones, the weight
can be determined according to its distance to each bone

1=iw
0=≠ijw

CSE 872 Dr. Charles B. Owen
Advanced Computer Graphics50

Containment Binding (3DSMax)

• Volume primitives around the bones
– Boxes, cylinders, etc.
– Vertex weights assigned based on which

primitives it is in

http://www.msu.edu/

CSE 872 Dr. Charles B. Owen
Advanced Computer Graphics51

Smooth Skin Algorithm

http://www.msu.edu/

• The meshes exhibit volume loss as joints are rotated to
extreme angles.

• These are called “joint collapse” and “candy wrapper” effect

• These undesirable results occur because of a lack of
flexibility in the framework.

Problems with Linear Blending

Linear
blending

Non-linear
blending

90
degree

180
degree

CSE 872 Dr. Charles B. Owen
Advanced Computer Graphics53

Limitations of Smooth Skin

http://www.msu.edu/

Why does it happens?
• Simple linear blending in the Cartesian space

causes the artefacts

Solution?
• Interpolating the homogeneous transformations

• Kavan et al. [SIGGRAPH08], etc.

180 degree

90 degree

How to solve volume loss?

Add additional joints that half interpolate the
rotations

– Each joint should be only rotated a little, not
reaching the extreme angle

Remaining difficulties

• Deciding Weights
• Deciding Skeletons

• Muscle buldging
– Bulging the biceps when the elbow is bent

Deciding Weights from Examples

• Instead of manually tuning the weights, we
can let the system learn them from
examples

• Alex Mohr and Michael Gleicher [SIGGRAPH’03]

http://www.youtube.com/watch?
v=e6y5plTq6bo

Automatic Rigging
• How can we automatically compute the skeleton

from the polygon data?

• Can make use of the medial axis

• Medial axis is where the distance to the surface
is C1 discontinuous

• Can be computed by circle / sphere fitting

Anatomical models

• Model the body by
– Muscles

– Fat

– Skin

CSE 872 Dr. Charles B. Owen
Advanced Computer Graphics61

Detailed Anatomical Models

http://www.msu.edu/

Method
1. When the joints are bent, the muscles contract

2. The distance between the origin and insertion
point decreases

3. The volume of the muscles are kept the same,
so they pump up

4. The skin is deformed to cover the muscles

Summary
• Kinematics

– Hierarchical Model

– Motion Capture

• Skinning
– Linear Blending

– Example-based method

– Automatic Rigging

– Anatomical models

Readings
(beyond the scope of this class)

Skinning
• A Comparison of Linear Skinning Techniques for Character Animation

Afrigraph 2007
• Multi-Weight Enveloping: Least-Squares Approximation Techniques for Skin

Animation
– Wang and Phillips, SCA 02
– http://portal.acm.org/citation.cfm?id=545283

• Guessing the weights from examples
– Alex Mohr Michael Gleicher Building Effcient, Accurate Character Skins

from Examples. SIGGRAPH 2003
• Automatic Rigging and Animation of 3D Characters Ilya Baran Jovan Popovi´c,

SIGGRAPH 2007

• http://www.mit.edu/~ibaran/autorig/pinocchio.html
• Geometric Skinning with Approximate Dual Quaternion

Blending, SIGGRAPH 2008

http://www.mit.edu/~ibaran/autorig/pinocchio.html

	Slide 1
	Skeletal Animation
	Slide 3
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Motion Capture
	BVH
	Slide 31
	Slide 32
	An example
	Slide 34
	Part 2: Data
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 48
	Slide 49
	Containment Binding
	Smooth Skin Algorithm
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

