Quiz

- Why is dithering necessary?

Diffusion dither

Quiz

- Why is dithering necessary?
- To reproduce gray levels on binary displays

Laser printed image WITH dithering

Laser printed image WITHOUT dithering

Quiz

- Is a pixel with value 255 twice as bright as another pixel with value 128 ?

Quiz

- Is a pixel with value 255 twice as bright as another pixel with value 128 ?
- No, 128 is darker than half the brightness of 255 because of the Gamma function
- Displays are calibrated to use the standard gamma=2.2

$$
I(n)=(n / N)^{\gamma}
$$

How many levels are necessary for a smooth gradation W/O visible steps?

How many levels are necessary for a smooth gradation W/O visible steps?

- It depends on the dynamic range of a display
- Ideal case : exponential quantization
2% steps are most efficient because we cannot notice a change less than 2% :
$0 \mapsto I_{\min } ; 1 \mapsto 1.02 I_{\min } ; 2 \mapsto(1.02)^{2} I_{\min } ; \ldots$

120 steps are needed for 10:1 dynamic range because

$$
(1.02)^{120}=10.76
$$

240 steps are needed for 100:1 dynamic range
High precision (e.g. 72bpp) is necessary for an HDR image

Perspective

 Lecture 3

History of projection

- Ancient times: Greeks wrote about laws of perspective
- Renaissance: perspective is adopted by artists

© 2008 Steve Marschner • 8

History of projection

- Later Renaissance: perspective formalized precisely

da Vinci c. 1498

Plane projection in photography

- This is another model for what we are doing
- applies more directly in realistic rendering

© 2008 Steve Marschner • 10

Perspective

one-point: projection plane parallel to a coordinate plane (to two coordinate axes)
two-point: projection plane parallel to one coordinate axis three-point:
projection plane not parallel to a coordinate axis

Perspective projection (normal)

- Perspective is projection by lines through a point
- "normal" = image plane (film) perpendicular to view direction
- magnification determined by:
- image height h
- image plane distance d
- object depth z
- f.o.v. $\alpha=2 \operatorname{atan}(h /(2 d))$
- $y^{\prime}=d y / z$
- "normal" case corresponds to common types of cameras

Perspective projection (normal)

- Perspective is projection by lines through a point
- "normal" = image plane (film) perpendicular to view direction
- magnification determined by:
- image height h
- image plane distance d
- object depth z
- f.o.v. $\alpha=2 \operatorname{atan}(h /(2 d))$
- $y^{\prime}=d y / z$
- "normal" case corresponds to common types of cameras

View volume: perspective

Field of view (or f.o.v.)

- The angle between the rays corresponding to opposite edges of a perspective image
- easy to compute only for "normal" perspective
- have to decide to measure vert., horiz., or diag.
- In cameras, determined by focal length
- confusing because of many image sizes
- for 35 mm format (36 mm by 24 mm image)
- $18 \mathrm{~mm}=67^{\circ}$ v.f.o.v. - super-wide angle
$\cdot 28 \mathrm{~mm}=46^{\circ}$ v.f.o.v. - wide angle
- $50 \mathrm{~mm}=27^{\circ}$ v.f.o.v. - "normal"
- $100 \mathrm{~mm}=14^{\circ}$ v.f.o.v. - narrow angle

Field of view

- Determines "strength" of perspective effects

close viewpoint wide angle prominent foreshortening

far viewpoint narrow angle little foreshortening

Parallel projection

- Viewing rays are parallel rather than diverging

Multiview orthographic

front elevation

Figure 2-1. Multiview orthographic projection: plan, elevations, and section of a building.

Multiview orthographic

rear

front

bottom

- projection plane parallel to a coordinate plane
- projection direction perpendicular to projection plane

Shifted perspective projection

- Perspective but with projection plane not perpendicular to view direction
- additional parameter: projection plane normal
- exactly equivalent to cropping out an off-center rectangle from a larger "normal" perspective
- corresponds to view camera in photography

Why shifted perspective?

- Control convergence of parallel lines
- Standard example: architecture
- buildings are taller than you, so you look up
- top of building is farther away, so it looks smaller
- Solution: make projection plane parallel to facade
- top of building is the same distance from the projection plane
- Same perspective effects can be achieved using post-processing
- (though not the focus effects)
- choice of which rays vs. arrangement of rays in image

[Philip Greenspun]
camera tilted up: converging vertical lines

lens shifted up: parallel vertical lines

Specifying perspective projections

- Many ways to do this
- common: from, at, up, v.f.o.v. (but not for shifted)
- One way (used in ray tracer):
- viewpoint, view direction, up
- establishes location and orientation of viewer
- view direction is the direction of the center ray
- image width, image height, projection distance
- establishes size and location of image rectangle
- image plane normal
- can be different from view direction to get shifted perspective

